teqpflsh Package¶
- class teqpflsh._teqpflsh_impl.AbstractScaler¶
 Bases:
objectC++ docs: AbstractScaler
- class teqpflsh._teqpflsh_impl.ChebyshevApproximation1D(*args, **kwargs)¶
 Bases:
objectC++ docs: ChebyshevApproximation1D
- count_x_for_y_many(self, arg0: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg1: int, arg2: int, arg3: float, arg4: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], /) None¶
 
- eval(self, arg: float, /) float¶
 
- eval_many(self, arg0: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg1: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], /) None¶
 
- property expansions¶
 (self) -> list[teqpflsh._teqpflsh_impl.ChebyshevExpansion]
- get_intervals_containing_y(self, arg: float, /) list[teqpflsh._teqpflsh_impl.IntervalMatch]¶
 
- get_x_for_y(self, *, y: float, bits: int = 64, max_iter: int = 100, boundsftol: float = 1e-13) list[tuple[float, int]]¶
 
- property monotonic_intervals¶
 (self) -> list[teqpflsh::superancillary::IntervalMatch]
- property x_at_extrema¶
 (self) -> list[float]
- property xmax¶
 (self) -> float
- property xmin¶
 (self) -> float
- class teqpflsh._teqpflsh_impl.ChebyshevExpansion(*args, **kwargs)¶
 Bases:
objectC++ docs: ChebyshevExpansion
- property coeff¶
 (self) -> numpy.ndarray[dtype=float64, shape=(*), order=’C’]
- eval(self, arg: float, /) float¶
 
- eval_Eigen(self, arg0: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg1: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], /) None¶
 
- eval_many(self, arg0: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg1: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], /) None¶
 
- solve_for_x(self, arg0: float, arg1: float, arg2: float, arg3: int, arg4: int, arg5: float, /) float¶
 
- solve_for_x_count(self, arg0: float, arg1: float, arg2: float, arg3: int, arg4: int, arg5: float, /) tuple[float, int]¶
 
- solve_for_x_many(self, arg0: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg1: float, arg2: float, arg3: int, arg4: int, arg5: float, arg6: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg7: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], /) None¶
 
- property xmax¶
 (self) -> float
- property xmin¶
 (self) -> float
- class teqpflsh._teqpflsh_impl.CoordinateSequence(*args, **kwargs)¶
 Bases:
objectC++ docs: CoordinateSequence
- add(self, arg0: float, arg1: float, /) None¶
 
- closeRing(self, arg: bool, /) None¶
 
- getSize(self) int¶
 
- getX(self, arg: int, /) float¶
 
- getY(self, arg: int, /) float¶
 
- class teqpflsh._teqpflsh_impl.Envelope¶
 Bases:
objectC++ docs: Envelope
- property x_max¶
 (self) -> float
- property x_min¶
 (self) -> float
- property y_max¶
 (self) -> float
- property y_min¶
 (self) -> float
- class teqpflsh._teqpflsh_impl.FlashPhase¶
 Bases:
objectC++ docs: FlashPhase
- property mole_fractions¶
 (self) -> numpy.ndarray[dtype=float64, shape=(*), order=’C’]
- property qmolar¶
 (self) -> float
- property rho_molm3¶
 (self) -> float
- class teqpflsh._teqpflsh_impl.FlashSolution¶
 Bases:
objectC++ docs: FlashSolution
- property Nphases¶
 (self) -> int
- property T_K¶
 (self) -> float
- property phases¶
 (self) -> list[teqpflsh._teqpflsh_impl.FlashPhase]
- class teqpflsh._teqpflsh_impl.Geometry¶
 Bases:
objectC++ docs: Geometry
- DelaunayTriangulate(self) teqpflsh._teqpflsh_impl.Geometry¶
 
- containsPoint(self, arg: teqpflsh._teqpflsh_impl.Point, /) bool¶
 
- difference(self, arg: teqpflsh._teqpflsh_impl.Geometry, /) teqpflsh._teqpflsh_impl.Geometry¶
 
- fastTriangulate(self) teqpflsh._teqpflsh_impl.Geometry¶
 
- getCentroid(self) teqpflsh._teqpflsh_impl.Point¶
 
- getCoordinates(self) teqpflsh._teqpflsh_impl.CoordinateSequence¶
 
- getGeometryN(self, arg: int, /) teqpflsh._teqpflsh_impl.Geometry¶
 
- getNumGeometries(self) int¶
 
- getNumPoints(self) int¶
 
- getXY(self) tuple[numpy.ndarray[dtype=float64, shape=(*), order='C'], numpy.ndarray[dtype=float64, shape=(*), order='C']]¶
 Convenience function to return the X, Y coordinates as numpy arrays in Python
- get_PreparedGeometry(self) teqpflsh._teqpflsh_impl.PreparedGeometry¶
 
- intersection(self, arg: teqpflsh._teqpflsh_impl.Geometry, /) teqpflsh._teqpflsh_impl.Geometry¶
 
- property isSimple¶
 (self) -> bool
- property isValid¶
 (self) -> bool
- make_valid(self) teqpflsh._teqpflsh_impl.Geometry¶
 
- run_DouglasPeuckerSimplifier(self, tolerance: float) teqpflsh._teqpflsh_impl.Geometry¶
 
- run_TopologyPreservingSimplifier(self, tolerance: float) teqpflsh._teqpflsh_impl.Geometry¶
 
- class teqpflsh._teqpflsh_impl.GeometryFactory¶
 Bases:
objectC++ docs: GeometryFactory
- createPolygon(self, arg: teqpflsh._teqpflsh_impl.Geometry, /) teqpflsh._teqpflsh_impl.Geometry¶
 
- class teqpflsh._teqpflsh_impl.GeometryFactoryHolder(*args, **kwargs)¶
 Bases:
objectC++ docs: GeometryFactoryHolder
- createPoint(self, arg0: float, arg1: float, /) teqpflsh._teqpflsh_impl.Point¶
 
- createPolygon(self, arg: teqpflsh._teqpflsh_impl.CoordinateSequence, /) teqpflsh._teqpflsh_impl.Geometry¶
 
- makeclosedpolygon(self, x: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], y: ndarray[dtype=float64, shape=(*), order='C', device='cpu']) teqpflsh._teqpflsh_impl.Geometry¶
 A convenience function to make a closed polygon given numpy arrays
- class teqpflsh._teqpflsh_impl.HelmholtzInterface¶
 Bases:
objectC++ docs: HelmholtzInterface
- class teqpflsh._teqpflsh_impl.IntervalMatch¶
 Bases:
objectC++ docs: IntervalMatch
- property expansioninfo¶
 (self) -> list[teqpflsh._teqpflsh_impl.MonotonicExpansionMatch]
- property xmax¶
 (self) -> float
- property xmin¶
 (self) -> float
- property ymax¶
 (self) -> float
- property ymin¶
 (self) -> float
- class teqpflsh._teqpflsh_impl.L2Tree¶
 Bases:
objectC++ docs: L2Tree
- get_nearest_indexd2(self, x: float, y: float) tuple[int, float]¶
 - get_nearest_indexd2(self, pt: numpy.ndarray[dtype=float64, shape=(2), order='C']) tuple[int, float]
 
- get_nearest_indexd2_many(self, x: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], y: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], idx: ndarray[dtype=int32, shape=(*), order='C', device='cpu'], d2: ndarray[dtype=float64, shape=(*), order='C', device='cpu']) None¶
 
- get_used_bytes(self) int¶
 
- class teqpflsh._teqpflsh_impl.L2TreeHolder(*args, **kwargs)¶
 Bases:
objectC++ docs: L2TreeHolder
- property tree¶
 (self) -> teqpflsh._teqpflsh_impl.L2Tree
- class teqpflsh._teqpflsh_impl.LeafContents¶
 Bases:
objectC++ docs: LeafContents
- property status¶
 (self) -> teqpflsh::PQTStatus
- class teqpflsh._teqpflsh_impl.MainFlasher(*args, **kwargs)¶
 Bases:
objectC++ docs: MainFlasher
- flash(self, proppair: teqpflsh._teqpflsh_impl.PropertyPairs, val1: float, val2: float) teqpflsh._teqpflsh_impl.FlashSolution | None¶
 
- flash_many(self, proppair: teqpflsh._teqpflsh_impl.PropertyPairs, val1: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], val2: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], T: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], rho: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], q: ndarray[dtype=float64, shape=(*), order='C', device='cpu']) None¶
 
- property regioned_flasher¶
 (self) -> teqpflsh._teqpflsh_impl.RegionedFlasher
- class teqpflsh._teqpflsh_impl.MaxAbsErrorCondition(*args, **kwargs)¶
 Bases:
StoppingConditionC++ docs: MaxAbsErrorCondition
- class teqpflsh._teqpflsh_impl.MinMaxLogScaler(*args, **kwargs)¶
 Bases:
AbstractScalerC++ docs: MinMaxLogScaler
- class teqpflsh._teqpflsh_impl.MinMaxScaler(*args, **kwargs)¶
 Bases:
AbstractScalerC++ docs: MinMaxScaler
- class teqpflsh._teqpflsh_impl.MonotonicExpansionMatch¶
 Bases:
objectC++ docs: MonotonicExpansionMatch
- property idx¶
 (self) -> int
- property xmax¶
 (self) -> float
- property xmin¶
 (self) -> float
- property ymax¶
 (self) -> float
- property ymin¶
 (self) -> float
- class teqpflsh._teqpflsh_impl.NRIterator¶
 Bases:
objectC++ docs: NRIterator
- calc_J(self, arg0: float, arg1: float, /) numpy.ndarray[dtype=float64, shape=(2, 2), order='F']¶
 
- calc_just_step(self, arg0: float, arg1: float, /) numpy.ndarray[dtype=float64, shape=(2), order='C']¶
 
- calc_maxabsr(self, arg0: float, arg1: float, /) float¶
 
- calc_r(self, arg0: float, arg1: float, /) numpy.ndarray[dtype=float64, shape=(2), order='C']¶
 
- calc_step(self, arg0: float, arg1: float, /) tuple[numpy.ndarray[dtype=float64, shape=(2), order='C'], teqp::cppinterface::IterationMatrices]¶
 
- calc_vals(self, arg0: float, arg1: float, /) numpy.ndarray[dtype=float64, shape=(2), order='C']¶
 
- get_T(self) float¶
 
- get_maxabsr(self) float¶
 
- get_nonconstant_indices(self) list[int]¶
 
- get_rho(self) float¶
 
- get_step_count(self) int¶
 
- get_vals(self) numpy.ndarray[dtype=float64, shape=(2), order='C']¶
 
- path_integration(self, arg0: float, arg1: float, arg2: int, /) tuple[float, float, float, float]¶
 
- reset(self, arg0: float, arg1: float, /) None¶
 
- take_steps(self, N: int, apply_stopping: bool) teqpflsh._teqpflsh_impl.StoppingConditionReason¶
 
- property verbose¶
 (self) -> bool
- class teqpflsh._teqpflsh_impl.NanXDXErrorCondition(*args, **kwargs)¶
 Bases:
StoppingConditionC++ docs: NanXDXErrorCondition
- class teqpflsh._teqpflsh_impl.PQTStatus(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)¶
 Bases:
EnumPQTStatus
- inside = 0¶
 
- intersection = 2¶
 
- outside = 1¶
 
- class teqpflsh._teqpflsh_impl.Point¶
 Bases:
GeometryC++ docs: Point
- DelaunayTriangulate(self) teqpflsh._teqpflsh_impl.Geometry¶
 
- containsPoint(self, arg: teqpflsh._teqpflsh_impl.Point, /) bool¶
 
- difference(self, arg: teqpflsh._teqpflsh_impl.Geometry, /) teqpflsh._teqpflsh_impl.Geometry¶
 
- fastTriangulate(self) teqpflsh._teqpflsh_impl.Geometry¶
 
- getCentroid(self) teqpflsh._teqpflsh_impl.Point¶
 
- getCoordinates(self) teqpflsh._teqpflsh_impl.CoordinateSequence¶
 
- getGeometryN(self, arg: int, /) teqpflsh._teqpflsh_impl.Geometry¶
 
- getNumGeometries(self) int¶
 
- getNumPoints(self) int¶
 
- getX(self) float¶
 
- getXY(self) tuple[numpy.ndarray[dtype=float64, shape=(*), order='C'], numpy.ndarray[dtype=float64, shape=(*), order='C']]¶
 Convenience function to return the X, Y coordinates as numpy arrays in Python
- getY(self) float¶
 
- get_PreparedGeometry(self) teqpflsh._teqpflsh_impl.PreparedGeometry¶
 
- intersection(self, arg: teqpflsh._teqpflsh_impl.Geometry, /) teqpflsh._teqpflsh_impl.Geometry¶
 
- property isSimple¶
 (self) -> bool
- property isValid¶
 (self) -> bool
- make_valid(self) teqpflsh._teqpflsh_impl.Geometry¶
 
- run_DouglasPeuckerSimplifier(self, tolerance: float) teqpflsh._teqpflsh_impl.Geometry¶
 
- run_TopologyPreservingSimplifier(self, tolerance: float) teqpflsh._teqpflsh_impl.Geometry¶
 
- class teqpflsh._teqpflsh_impl.PolyQuadNode¶
 Bases:
objectC++ docs: PolyQuadNode
- property NE¶
 (self) -> teqpflsh._teqpflsh_impl.PolyQuadNode
- property NW¶
 (self) -> teqpflsh._teqpflsh_impl.PolyQuadNode
- property SE¶
 (self) -> teqpflsh._teqpflsh_impl.PolyQuadNode
- property SW¶
 (self) -> teqpflsh._teqpflsh_impl.PolyQuadNode
- getNode(self, arg0: float, arg1: float, arg2: bool, /) teqpflsh._teqpflsh_impl.PolyQuadNode¶
 
- get_contents(self) teqpflsh._teqpflsh_impl.LeafContents¶
 
- property terminal¶
 (self) -> bool
- xmax(self) float¶
 
- xmin(self) float¶
 
- ymax(self) float¶
 
- ymin(self) float¶
 
- class teqpflsh._teqpflsh_impl.PolyQuadTree(*args, **kwargs)¶
 Bases:
objectC++ docs: PolyQuadTree
- area_stats(self) None¶
 
- do_splits(self, arg: int, /) None¶
 
- get_leaves(self) list[teqpflsh._teqpflsh_impl.PolyQuadNode]¶
 
- get_polygon_xy(self, arg: teqpflsh._teqpflsh_impl.PolyQuadNode, /) tuple[list[float], list[float]] | None¶
 
- get_status(self, arg: teqpflsh._teqpflsh_impl.PolyQuadNode, /) teqpflsh._teqpflsh_impl.PQTStatus¶
 
- is_complete(self, arg: teqpflsh._teqpflsh_impl.PolyQuadNode, /) bool¶
 
- is_intersection(self, arg: teqpflsh._teqpflsh_impl.PolyQuadNode, /) bool¶
 
- property tree¶
 (self) -> teqpflsh._teqpflsh_impl.PolyQuadNode
- class teqpflsh._teqpflsh_impl.PreparedGeometry¶
 Bases:
objectC++ docs: PreparedGeometry
- contains(self, arg: teqpflsh._teqpflsh_impl.Geometry, /) bool¶
 
- nearestPoints(self, arg: teqpflsh._teqpflsh_impl.Geometry, /) teqpflsh._teqpflsh_impl.CoordinateSequence¶
 
- class teqpflsh._teqpflsh_impl.PropertyPairs(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)¶
 Bases:
EnumPropertyPairs
- DH = 3¶
 
- DP = 2¶
 
- DS = 4¶
 
- DT = 1¶
 
- DU = 5¶
 
- HP = 6¶
 
- HS = 9¶
 
- HT = 10¶
 
- HU = 14¶
 
- PS = 7¶
 
- PT = 13¶
 
- PU = 8¶
 
- ST = 0¶
 
- SU = 12¶
 
- TU = 11¶
 
- class teqpflsh._teqpflsh_impl.PropertySet¶
 Bases:
objectC++ docs: PropertySet
- property T¶
 (self) -> numpy.ndarray[dtype=float64, shape=(*), order=’C’]
- get_array(self, arg: str, /) numpy.ndarray[dtype=float64, shape=(*), order='C']¶
 
- get_arrays(self, arg: teqpflsh._teqpflsh_impl.PropertyPairs, /) tuple[numpy.ndarray[dtype=float64, shape=(*), order='C'], numpy.ndarray[dtype=float64, shape=(*), order='C']]¶
 
- property h¶
 (self) -> numpy.ndarray[dtype=float64, shape=(*), order=’C’]
- property p¶
 (self) -> numpy.ndarray[dtype=float64, shape=(*), order=’C’]
- property rho¶
 (self) -> numpy.ndarray[dtype=float64, shape=(*), order=’C’]
- property s¶
 (self) -> numpy.ndarray[dtype=float64, shape=(*), order=’C’]
- property u¶
 (self) -> numpy.ndarray[dtype=float64, shape=(*), order=’C’]
- class teqpflsh._teqpflsh_impl.QuadRegion2D(*args, **kwargs)¶
 Bases:
objectC++ docs: QuadRegion2D
- property bounding_polygon¶
 (self) -> teqpflsh._teqpflsh_impl.Geometry
- do_Delaunay_triangulation(self) teqpflsh._teqpflsh_impl.Geometry¶
 
- do_fast_triangulation(self) teqpflsh._teqpflsh_impl.Geometry¶
 
- do_splits(self, arg: int, /) None¶
 
- get_coords_xy(self) tuple[list[float], list[float]]¶
 
- get_envelope(self) teqpflsh._teqpflsh_impl.Envelope¶
 
- get_nonsimple_xy(self) tuple[list[float], list[float]]¶
 
- get_quadtree_ro(self) teqpflsh._teqpflsh_impl.PolyQuadTree¶
 
- get_quadtree_rw(self) teqpflsh._teqpflsh_impl.PolyQuadTree¶
 
- sample_gridded(self, arg0: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg1: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg2: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg3: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], /) int¶
 
- sample_gridded_w_tree(self, arg0: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg1: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg2: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg3: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], /) int¶
 
- sample_random(self, arg0: int, arg1: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg2: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], /) None¶
 
- class teqpflsh._teqpflsh_impl.RegionedFlashReturn¶
 Bases:
objectC++ docs: RegionedFlashReturn
- property T¶
 Temperature, K
- property candidate_duration_us¶
 How long the candidate determination part took, in microseconds
- property maxabsr¶
 Maximum absolute residual
- property msg¶
 Message associated with stoppping reason
- property newton_duration_us¶
 How long the Newton part took, in microseconds
- property reason¶
 Enumerated value for stopping reason
- property rho¶
 Molar density, mol/m3
- property step_count¶
 How many Newton steps were takenm
- property total_duration_us¶
 How long the total calculation took, in microseconds
- class teqpflsh._teqpflsh_impl.RegionedFlasher(*args, **kwargs)¶
 Bases:
objectC++ docs: RegionedFlasher
- add_region(self, *, T: numpy.ndarray[dtype=float64, shape=(*), order='C'], rho: numpy.ndarray[dtype=float64, shape=(*), order='C'], NT: int, Nrho: int) None¶
 Add a region to the set of regions
- flash(self, proppair: teqpflsh._teqpflsh_impl.PropertyPairs, val1: float, val2: float) teqpflsh._teqpflsh_impl.RegionedFlashReturn¶
 Do a flash calculation
- flash_many(self, proppair: teqpflsh._teqpflsh_impl.PropertyPairs, val1: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], val2: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], T: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], rho: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], steps: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], maxabs: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], newtontime: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], candtime: ndarray[dtype=float64, shape=(*), order='C', device='cpu']) None¶
 Do many flash calculations, for testing in Python
- get_NRIterator(self, arg0: collections.abc.Sequence[str], arg1: numpy.ndarray[dtype=float64, shape=(2), order='C'], arg2: float, arg3: float, arg4: numpy.ndarray[dtype=float64, shape=(*), order='C'], arg5: tuple[bool, bool], arg6: collections.abc.Sequence[teqpflsh._teqpflsh_impl.StoppingCondition], /) teqpflsh._teqpflsh_impl.NRIterator¶
 Construct a Newton iterator object
- get_quadtree_intersections(self, arg0: teqpflsh._teqpflsh_impl.PropertyPairs, arg1: float, arg2: float, /) list[teqpflsh._teqpflsh_impl.QuadRegion2D]¶
 
- get_regions_ro(self) list[teqpflsh._teqpflsh_impl.ThermodynamicRegion]¶
 Get a read-only view of the regions
- get_regions_rw(self) list[teqpflsh._teqpflsh_impl.ThermodynamicRegion]¶
 Get read-write access to the regions
- get_starting_Trho(self, arg0: teqpflsh._teqpflsh_impl.PropertyPairs, arg1: float, arg2: float, /) list[tuple[teqpflsh._teqpflsh_impl.ThermodynamicRegion, teqpflsh._teqpflsh_impl.TrhoLookup]]¶
 Get the starting temperature, density pair from the K-D tree
- remove_all_regions(self) None¶
 Remove all the regions to restore object to its initial state
- class teqpflsh._teqpflsh_impl.StoppingCondition¶
 Bases:
objectC++ docs: StoppingCondition
- class teqpflsh._teqpflsh_impl.StoppingConditionReason(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)¶
 Bases:
EnumStoppingConditionReason
- fatal = 3¶
 
- keep_going = 1¶
 
- success = 2¶
 
- class teqpflsh._teqpflsh_impl.SuperAncillary(*args, **kwargs)¶
 Bases:
objectC++ docs: SuperAncillary
- add_variable(self, *, k: str, caller: collections.abc.Callable[[float, float], float]) None¶
 
- eval_sat(self, *, T: float, k: str, q: int) float¶
 
- eval_sat_many(self, *, T: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], k: str, q: int, y: ndarray[dtype=float64, shape=(*), order='C', device='cpu']) None¶
 
- flash(self, arg0: teqpflsh._teqpflsh_impl.PropertyPairs, arg1: float, arg2: float, /) teqpflsh._teqpflsh_impl.SuperAncillaryTwoPhaseSolution | None¶
 
- flash_many(self, arg0: teqpflsh._teqpflsh_impl.PropertyPairs, arg1: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg2: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg3: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg4: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg5: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], /) None¶
 
- get_T_from_p(self, *, p: float) float¶
 
- get_approx1d(self, *, k: str, q: int) teqpflsh._teqpflsh_impl.ChebyshevApproximation1D¶
 
- get_vaporquality(self, *, T: float, propval: float, k: str) float¶
 
- get_yval(self, *, T: float, q: float, k: str) float¶
 
- get_yval_many(self, *, T: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], k: str, q: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], y: ndarray[dtype=float64, shape=(*), order='C', device='cpu']) None¶
 
- property invlnp¶
 (self) -> teqpflsh._teqpflsh_impl.ChebyshevApproximation1D
- solve_for_T(self, *, propval: float, k: str, q: bool, bits: int = 64, max_iter: int = 100, boundsftol: float = 1e-13) list[tuple[float, int]]¶
 
- solve_for_Tq_DX(self, arg0: float, arg1: float, arg2: str, arg3: int, arg4: int, arg5: float, /) teqpflsh._teqpflsh_impl.SuperAncillaryTwoPhaseSolution | None¶
 
- solve_for_Tq_DX_many(self, arg0: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg1: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg2: str, arg3: int, arg4: int, arg5: float, arg6: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg7: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg8: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], /) None¶
 
- class teqpflsh._teqpflsh_impl.SuperAncillaryTwoPhaseSolution¶
 Bases:
objectC++ docs: SuperAncillaryTwoPhaseSolution
- property T¶
 (self) -> float
- property counter¶
 (self) -> int
- property q¶
 (self) -> float
- class teqpflsh._teqpflsh_impl.ThermodynamicRegion¶
 Bases:
objectC++ docs: ThermodynamicRegion
- add_pair(self, *, proppair: teqpflsh._teqpflsh_impl.PropertyPairs, Nsplit: int, and_kdtree: bool = True) None¶
 
- get_kdtree(self, arg: teqpflsh._teqpflsh_impl.PropertyPairs, /) teqpflsh._teqpflsh_impl.L2Tree¶
 
- get_starting_Trho_many(self, proppair: teqpflsh._teqpflsh_impl.PropertyPairs, val1: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], val2: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], T: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], rho: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], d2: ndarray[dtype=float64, shape=(*), order='C', device='cpu']) None¶
 
- get_transformed_region(self, arg: teqpflsh._teqpflsh_impl.PropertyPairs, /) teqpflsh._teqpflsh_impl.QuadRegion2D¶
 
- has_pair(self, arg: teqpflsh._teqpflsh_impl.PropertyPairs, /) bool¶
 
- property propset_Trhogrid¶
 (self) -> teqpflsh::properties::PropertySet<Eigen::Array<double, -1, 1, 0, -1, 1> >
- property propset_bounding¶
 (self) -> teqpflsh::properties::PropertySet<Eigen::Array<double, -1, 1, 0, -1, 1> >
- property transformed_regions¶
 (self) -> dict[teqpflsh::properties::PropertyPairs, teqpflsh._teqpflsh_impl.QuadRegion2D]
- class teqpflsh._teqpflsh_impl.TrhoLookup¶
 Bases:
objectC++ docs: TrhoLookup
- property T¶
 (self) -> float
- property d2¶
 (self) -> float
- property rho¶
 (self) -> float
- teqpflsh._teqpflsh_impl.add(arg0: int, arg1: int, /) int¶
 add
- teqpflsh._teqpflsh_impl.get_pair_from_chars(arg0: str, arg1: str, /) teqpflsh._teqpflsh_impl.PropertyPairs¶
 get_pair_from_chars
- teqpflsh._teqpflsh_impl.get_pair_log_scaling(arg: teqpflsh._teqpflsh_impl.PropertyPairs, /) tuple[bool, bool]¶
 get_pair_log_scaling
- teqpflsh._teqpflsh_impl.get_property_chars(arg: teqpflsh._teqpflsh_impl.PropertyPairs, /) tuple[str, str]¶
 get_property_chars
- teqpflsh._teqpflsh_impl.indexer(arg0: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg1: int, /) float¶
 indexer
- teqpflsh._teqpflsh_impl.indexer33(arg0: ndarray[dtype=float64, shape=(3, 3), order='C', device='cpu'], arg1: int, arg2: int, arg3: str, /) float¶
 indexer33
- teqpflsh._teqpflsh_impl.sample_random(arg0: teqpflsh._teqpflsh_impl.Geometry, arg1: int, arg2: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg3: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], /) None¶
 sample_random
- class teqpflsh._teqpflsh_impl.teqpHelmholtzInterface(*args, **kwargs)¶
 Bases:
HelmholtzInterfaceC++ docs: teqpHelmholtzInterface
- teqpflsh._teqpflsh_impl.toms748_solve(arg0: collections.abc.Callable[[float], float], arg1: float, arg2: float, arg3: int, arg4: int, /) tuple[tuple[float, float], int]¶
 toms748_solve