teqpflsh Package

class teqpflsh._teqpflsh_impl.AbstractScaler

Bases: object

C++ docs: AbstractScaler

class teqpflsh._teqpflsh_impl.ChebyshevApproximation1D(*args, **kwargs)

Bases: object

C++ docs: ChebyshevApproximation1D

count_x_for_y_many(self, arg0: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg1: int, arg2: int, arg3: float, arg4: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], /) None
eval(self, arg: float, /) float
eval_many(self, arg0: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg1: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], /) None
property expansions

(self) -> list[teqpflsh._teqpflsh_impl.ChebyshevExpansion]

get_intervals_containing_y(self, arg: float, /) list[teqpflsh._teqpflsh_impl.IntervalMatch]
get_x_for_y(self, *, y: float, bits: int = 64, max_iter: int = 100, boundsftol: float = 1e-13) list[tuple[float, int]]
property monotonic_intervals

(self) -> list[teqpflsh::superancillary::IntervalMatch]

property x_at_extrema

(self) -> list[float]

property xmax

(self) -> float

property xmin

(self) -> float

class teqpflsh._teqpflsh_impl.ChebyshevExpansion(*args, **kwargs)

Bases: object

C++ docs: ChebyshevExpansion

property coeff

(self) -> numpy.ndarray[dtype=float64, shape=(*), order=’C’]

eval(self, arg: float, /) float
eval_Eigen(self, arg0: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg1: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], /) None
eval_many(self, arg0: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg1: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], /) None
solve_for_x(self, arg0: float, arg1: float, arg2: float, arg3: int, arg4: int, arg5: float, /) float
solve_for_x_count(self, arg0: float, arg1: float, arg2: float, arg3: int, arg4: int, arg5: float, /) tuple[float, int]
solve_for_x_many(self, arg0: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg1: float, arg2: float, arg3: int, arg4: int, arg5: float, arg6: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg7: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], /) None
property xmax

(self) -> float

property xmin

(self) -> float

class teqpflsh._teqpflsh_impl.CoordinateSequence(*args, **kwargs)

Bases: object

C++ docs: CoordinateSequence

add(self, arg0: float, arg1: float, /) None
closeRing(self, arg: bool, /) None
getSize(self) int
getX(self, arg: int, /) float
getY(self, arg: int, /) float
class teqpflsh._teqpflsh_impl.Envelope

Bases: object

C++ docs: Envelope

property x_max

(self) -> float

property x_min

(self) -> float

property y_max

(self) -> float

property y_min

(self) -> float

class teqpflsh._teqpflsh_impl.FlashPhase

Bases: object

C++ docs: FlashPhase

property mole_fractions

(self) -> numpy.ndarray[dtype=float64, shape=(*), order=’C’]

property qmolar

(self) -> float

property rho_molm3

(self) -> float

class teqpflsh._teqpflsh_impl.FlashSolution

Bases: object

C++ docs: FlashSolution

property Nphases

(self) -> int

property T_K

(self) -> float

property phases

(self) -> list[teqpflsh._teqpflsh_impl.FlashPhase]

class teqpflsh._teqpflsh_impl.Geometry

Bases: object

C++ docs: Geometry

DelaunayTriangulate(self) teqpflsh._teqpflsh_impl.Geometry
containsPoint(self, arg: teqpflsh._teqpflsh_impl.Point, /) bool
difference(self, arg: teqpflsh._teqpflsh_impl.Geometry, /) teqpflsh._teqpflsh_impl.Geometry
fastTriangulate(self) teqpflsh._teqpflsh_impl.Geometry
getCentroid(self) teqpflsh._teqpflsh_impl.Point
getCoordinates(self) teqpflsh._teqpflsh_impl.CoordinateSequence
getGeometryN(self, arg: int, /) teqpflsh._teqpflsh_impl.Geometry
getNumGeometries(self) int
getNumPoints(self) int
getXY(self) tuple[numpy.ndarray[dtype=float64, shape=(*), order='C'], numpy.ndarray[dtype=float64, shape=(*), order='C']]

Convenience function to return the X, Y coordinates as numpy arrays in Python

get_PreparedGeometry(self) teqpflsh._teqpflsh_impl.PreparedGeometry
intersection(self, arg: teqpflsh._teqpflsh_impl.Geometry, /) teqpflsh._teqpflsh_impl.Geometry
property isSimple

(self) -> bool

property isValid

(self) -> bool

make_valid(self) teqpflsh._teqpflsh_impl.Geometry
run_DouglasPeuckerSimplifier(self, tolerance: float) teqpflsh._teqpflsh_impl.Geometry
run_TopologyPreservingSimplifier(self, tolerance: float) teqpflsh._teqpflsh_impl.Geometry
class teqpflsh._teqpflsh_impl.GeometryFactory

Bases: object

C++ docs: GeometryFactory

createPolygon(self, arg: teqpflsh._teqpflsh_impl.Geometry, /) teqpflsh._teqpflsh_impl.Geometry
class teqpflsh._teqpflsh_impl.GeometryFactoryHolder(*args, **kwargs)

Bases: object

C++ docs: GeometryFactoryHolder

createPoint(self, arg0: float, arg1: float, /) teqpflsh._teqpflsh_impl.Point
createPolygon(self, arg: teqpflsh._teqpflsh_impl.CoordinateSequence, /) teqpflsh._teqpflsh_impl.Geometry
makeclosedpolygon(self, x: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], y: ndarray[dtype=float64, shape=(*), order='C', device='cpu']) teqpflsh._teqpflsh_impl.Geometry

A convenience function to make a closed polygon given numpy arrays

class teqpflsh._teqpflsh_impl.HelmholtzInterface

Bases: object

C++ docs: HelmholtzInterface

class teqpflsh._teqpflsh_impl.IntervalMatch

Bases: object

C++ docs: IntervalMatch

property expansioninfo

(self) -> list[teqpflsh._teqpflsh_impl.MonotonicExpansionMatch]

property xmax

(self) -> float

property xmin

(self) -> float

property ymax

(self) -> float

property ymin

(self) -> float

class teqpflsh._teqpflsh_impl.L2Tree

Bases: object

C++ docs: L2Tree

get_nearest_indexd2(self, x: float, y: float) tuple[int, float]
get_nearest_indexd2(self, pt: numpy.ndarray[dtype=float64, shape=(2), order='C']) tuple[int, float]
get_nearest_indexd2_many(self, x: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], y: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], idx: ndarray[dtype=int32, shape=(*), order='C', device='cpu'], d2: ndarray[dtype=float64, shape=(*), order='C', device='cpu']) None
get_used_bytes(self) int
class teqpflsh._teqpflsh_impl.L2TreeHolder(*args, **kwargs)

Bases: object

C++ docs: L2TreeHolder

property tree

(self) -> teqpflsh._teqpflsh_impl.L2Tree

class teqpflsh._teqpflsh_impl.LeafContents

Bases: object

C++ docs: LeafContents

property status

(self) -> teqpflsh::PQTStatus

class teqpflsh._teqpflsh_impl.MainFlasher(*args, **kwargs)

Bases: object

C++ docs: MainFlasher

flash(self, proppair: teqpflsh._teqpflsh_impl.PropertyPairs, val1: float, val2: float) teqpflsh._teqpflsh_impl.FlashSolution | None
flash_many(self, proppair: teqpflsh._teqpflsh_impl.PropertyPairs, val1: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], val2: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], T: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], rho: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], q: ndarray[dtype=float64, shape=(*), order='C', device='cpu']) None
property regioned_flasher

(self) -> teqpflsh._teqpflsh_impl.RegionedFlasher

class teqpflsh._teqpflsh_impl.MaxAbsErrorCondition(*args, **kwargs)

Bases: StoppingCondition

C++ docs: MaxAbsErrorCondition

class teqpflsh._teqpflsh_impl.MinMaxLogScaler(*args, **kwargs)

Bases: AbstractScaler

C++ docs: MinMaxLogScaler

class teqpflsh._teqpflsh_impl.MinMaxScaler(*args, **kwargs)

Bases: AbstractScaler

C++ docs: MinMaxScaler

class teqpflsh._teqpflsh_impl.MonotonicExpansionMatch

Bases: object

C++ docs: MonotonicExpansionMatch

property idx

(self) -> int

property xmax

(self) -> float

property xmin

(self) -> float

property ymax

(self) -> float

property ymin

(self) -> float

class teqpflsh._teqpflsh_impl.NRIterator

Bases: object

C++ docs: NRIterator

calc_J(self, arg0: float, arg1: float, /) numpy.ndarray[dtype=float64, shape=(2, 2), order='F']
calc_just_step(self, arg0: float, arg1: float, /) numpy.ndarray[dtype=float64, shape=(2), order='C']
calc_maxabsr(self, arg0: float, arg1: float, /) float
calc_r(self, arg0: float, arg1: float, /) numpy.ndarray[dtype=float64, shape=(2), order='C']
calc_step(self, arg0: float, arg1: float, /) tuple[numpy.ndarray[dtype=float64, shape=(2), order='C'], teqp::cppinterface::IterationMatrices]
calc_vals(self, arg0: float, arg1: float, /) numpy.ndarray[dtype=float64, shape=(2), order='C']
get_T(self) float
get_maxabsr(self) float
get_nonconstant_indices(self) list[int]
get_rho(self) float
get_step_count(self) int
get_vals(self) numpy.ndarray[dtype=float64, shape=(2), order='C']
path_integration(self, arg0: float, arg1: float, arg2: int, /) tuple[float, float, float, float]
reset(self, arg0: float, arg1: float, /) None
take_steps(self, N: int, apply_stopping: bool) teqpflsh._teqpflsh_impl.StoppingConditionReason
property verbose

(self) -> bool

class teqpflsh._teqpflsh_impl.NanXDXErrorCondition(*args, **kwargs)

Bases: StoppingCondition

C++ docs: NanXDXErrorCondition

class teqpflsh._teqpflsh_impl.PQTStatus(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

PQTStatus

inside = 0
intersection = 2
outside = 1
class teqpflsh._teqpflsh_impl.Point

Bases: Geometry

C++ docs: Point

DelaunayTriangulate(self) teqpflsh._teqpflsh_impl.Geometry
containsPoint(self, arg: teqpflsh._teqpflsh_impl.Point, /) bool
difference(self, arg: teqpflsh._teqpflsh_impl.Geometry, /) teqpflsh._teqpflsh_impl.Geometry
fastTriangulate(self) teqpflsh._teqpflsh_impl.Geometry
getCentroid(self) teqpflsh._teqpflsh_impl.Point
getCoordinates(self) teqpflsh._teqpflsh_impl.CoordinateSequence
getGeometryN(self, arg: int, /) teqpflsh._teqpflsh_impl.Geometry
getNumGeometries(self) int
getNumPoints(self) int
getX(self) float
getXY(self) tuple[numpy.ndarray[dtype=float64, shape=(*), order='C'], numpy.ndarray[dtype=float64, shape=(*), order='C']]

Convenience function to return the X, Y coordinates as numpy arrays in Python

getY(self) float
get_PreparedGeometry(self) teqpflsh._teqpflsh_impl.PreparedGeometry
intersection(self, arg: teqpflsh._teqpflsh_impl.Geometry, /) teqpflsh._teqpflsh_impl.Geometry
property isSimple

(self) -> bool

property isValid

(self) -> bool

make_valid(self) teqpflsh._teqpflsh_impl.Geometry
run_DouglasPeuckerSimplifier(self, tolerance: float) teqpflsh._teqpflsh_impl.Geometry
run_TopologyPreservingSimplifier(self, tolerance: float) teqpflsh._teqpflsh_impl.Geometry
class teqpflsh._teqpflsh_impl.PolyQuadNode

Bases: object

C++ docs: PolyQuadNode

property NE

(self) -> teqpflsh._teqpflsh_impl.PolyQuadNode

property NW

(self) -> teqpflsh._teqpflsh_impl.PolyQuadNode

property SE

(self) -> teqpflsh._teqpflsh_impl.PolyQuadNode

property SW

(self) -> teqpflsh._teqpflsh_impl.PolyQuadNode

getNode(self, arg0: float, arg1: float, arg2: bool, /) teqpflsh._teqpflsh_impl.PolyQuadNode
get_contents(self) teqpflsh._teqpflsh_impl.LeafContents
property terminal

(self) -> bool

xmax(self) float
xmin(self) float
ymax(self) float
ymin(self) float
class teqpflsh._teqpflsh_impl.PolyQuadTree(*args, **kwargs)

Bases: object

C++ docs: PolyQuadTree

area_stats(self) None
do_splits(self, arg: int, /) None
get_leaves(self) list[teqpflsh._teqpflsh_impl.PolyQuadNode]
get_polygon_xy(self, arg: teqpflsh._teqpflsh_impl.PolyQuadNode, /) tuple[list[float], list[float]] | None
get_status(self, arg: teqpflsh._teqpflsh_impl.PolyQuadNode, /) teqpflsh._teqpflsh_impl.PQTStatus
is_complete(self, arg: teqpflsh._teqpflsh_impl.PolyQuadNode, /) bool
is_intersection(self, arg: teqpflsh._teqpflsh_impl.PolyQuadNode, /) bool
property tree

(self) -> teqpflsh._teqpflsh_impl.PolyQuadNode

class teqpflsh._teqpflsh_impl.PreparedGeometry

Bases: object

C++ docs: PreparedGeometry

contains(self, arg: teqpflsh._teqpflsh_impl.Geometry, /) bool
nearestPoints(self, arg: teqpflsh._teqpflsh_impl.Geometry, /) teqpflsh._teqpflsh_impl.CoordinateSequence
class teqpflsh._teqpflsh_impl.PropertyPairs(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

PropertyPairs

DH = 3
DP = 2
DS = 4
DT = 1
DU = 5
HP = 6
HS = 9
HT = 10
HU = 14
PS = 7
PT = 13
PU = 8
ST = 0
SU = 12
TU = 11
class teqpflsh._teqpflsh_impl.PropertySet

Bases: object

C++ docs: PropertySet

property T

(self) -> numpy.ndarray[dtype=float64, shape=(*), order=’C’]

get_array(self, arg: str, /) numpy.ndarray[dtype=float64, shape=(*), order='C']
get_arrays(self, arg: teqpflsh._teqpflsh_impl.PropertyPairs, /) tuple[numpy.ndarray[dtype=float64, shape=(*), order='C'], numpy.ndarray[dtype=float64, shape=(*), order='C']]
property h

(self) -> numpy.ndarray[dtype=float64, shape=(*), order=’C’]

property p

(self) -> numpy.ndarray[dtype=float64, shape=(*), order=’C’]

property rho

(self) -> numpy.ndarray[dtype=float64, shape=(*), order=’C’]

property s

(self) -> numpy.ndarray[dtype=float64, shape=(*), order=’C’]

property u

(self) -> numpy.ndarray[dtype=float64, shape=(*), order=’C’]

class teqpflsh._teqpflsh_impl.QuadRegion2D(*args, **kwargs)

Bases: object

C++ docs: QuadRegion2D

property bounding_polygon

(self) -> teqpflsh._teqpflsh_impl.Geometry

do_Delaunay_triangulation(self) teqpflsh._teqpflsh_impl.Geometry
do_fast_triangulation(self) teqpflsh._teqpflsh_impl.Geometry
do_splits(self, arg: int, /) None
get_coords_xy(self) tuple[list[float], list[float]]
get_envelope(self) teqpflsh._teqpflsh_impl.Envelope
get_nonsimple_xy(self) tuple[list[float], list[float]]
get_quadtree_ro(self) teqpflsh._teqpflsh_impl.PolyQuadTree
get_quadtree_rw(self) teqpflsh._teqpflsh_impl.PolyQuadTree
sample_gridded(self, arg0: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg1: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg2: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg3: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], /) int
sample_gridded_w_tree(self, arg0: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg1: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg2: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg3: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], /) int
sample_random(self, arg0: int, arg1: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg2: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], /) None
class teqpflsh._teqpflsh_impl.RegionedFlashReturn

Bases: object

C++ docs: RegionedFlashReturn

property T

Temperature, K

property candidate_duration_us

How long the candidate determination part took, in microseconds

property maxabsr

Maximum absolute residual

property msg

Message associated with stoppping reason

property newton_duration_us

How long the Newton part took, in microseconds

property reason

Enumerated value for stopping reason

property rho

Molar density, mol/m3

property step_count

How many Newton steps were takenm

property total_duration_us

How long the total calculation took, in microseconds

class teqpflsh._teqpflsh_impl.RegionedFlasher(*args, **kwargs)

Bases: object

C++ docs: RegionedFlasher

add_region(self, *, T: numpy.ndarray[dtype=float64, shape=(*), order='C'], rho: numpy.ndarray[dtype=float64, shape=(*), order='C'], NT: int, Nrho: int) None

Add a region to the set of regions

flash(self, proppair: teqpflsh._teqpflsh_impl.PropertyPairs, val1: float, val2: float) teqpflsh._teqpflsh_impl.RegionedFlashReturn

Do a flash calculation

flash_many(self, proppair: teqpflsh._teqpflsh_impl.PropertyPairs, val1: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], val2: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], T: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], rho: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], steps: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], maxabs: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], newtontime: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], candtime: ndarray[dtype=float64, shape=(*), order='C', device='cpu']) None

Do many flash calculations, for testing in Python

get_NRIterator(self, arg0: collections.abc.Sequence[str], arg1: numpy.ndarray[dtype=float64, shape=(2), order='C'], arg2: float, arg3: float, arg4: numpy.ndarray[dtype=float64, shape=(*), order='C'], arg5: tuple[bool, bool], arg6: collections.abc.Sequence[teqpflsh._teqpflsh_impl.StoppingCondition], /) teqpflsh._teqpflsh_impl.NRIterator

Construct a Newton iterator object

get_quadtree_intersections(self, arg0: teqpflsh._teqpflsh_impl.PropertyPairs, arg1: float, arg2: float, /) list[teqpflsh._teqpflsh_impl.QuadRegion2D]
get_regions_ro(self) list[teqpflsh._teqpflsh_impl.ThermodynamicRegion]

Get a read-only view of the regions

get_regions_rw(self) list[teqpflsh._teqpflsh_impl.ThermodynamicRegion]

Get read-write access to the regions

get_starting_Trho(self, arg0: teqpflsh._teqpflsh_impl.PropertyPairs, arg1: float, arg2: float, /) list[tuple[teqpflsh._teqpflsh_impl.ThermodynamicRegion, teqpflsh._teqpflsh_impl.TrhoLookup]]

Get the starting temperature, density pair from the K-D tree

remove_all_regions(self) None

Remove all the regions to restore object to its initial state

class teqpflsh._teqpflsh_impl.StoppingCondition

Bases: object

C++ docs: StoppingCondition

class teqpflsh._teqpflsh_impl.StoppingConditionReason(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

StoppingConditionReason

fatal = 3
keep_going = 1
success = 2
class teqpflsh._teqpflsh_impl.SuperAncillary(*args, **kwargs)

Bases: object

C++ docs: SuperAncillary

add_variable(self, *, k: str, caller: collections.abc.Callable[[float, float], float]) None
eval_sat(self, *, T: float, k: str, q: int) float
eval_sat_many(self, *, T: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], k: str, q: int, y: ndarray[dtype=float64, shape=(*), order='C', device='cpu']) None
flash(self, arg0: teqpflsh._teqpflsh_impl.PropertyPairs, arg1: float, arg2: float, /) teqpflsh._teqpflsh_impl.SuperAncillaryTwoPhaseSolution | None
flash_many(self, arg0: teqpflsh._teqpflsh_impl.PropertyPairs, arg1: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg2: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg3: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg4: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg5: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], /) None
get_T_from_p(self, *, p: float) float
get_approx1d(self, *, k: str, q: int) teqpflsh._teqpflsh_impl.ChebyshevApproximation1D
get_vaporquality(self, *, T: float, propval: float, k: str) float
get_yval(self, *, T: float, q: float, k: str) float
get_yval_many(self, *, T: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], k: str, q: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], y: ndarray[dtype=float64, shape=(*), order='C', device='cpu']) None
property invlnp

(self) -> teqpflsh._teqpflsh_impl.ChebyshevApproximation1D

solve_for_T(self, *, propval: float, k: str, q: bool, bits: int = 64, max_iter: int = 100, boundsftol: float = 1e-13) list[tuple[float, int]]
solve_for_Tq_DX(self, arg0: float, arg1: float, arg2: str, arg3: int, arg4: int, arg5: float, /) teqpflsh._teqpflsh_impl.SuperAncillaryTwoPhaseSolution | None
solve_for_Tq_DX_many(self, arg0: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg1: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg2: str, arg3: int, arg4: int, arg5: float, arg6: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg7: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg8: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], /) None
class teqpflsh._teqpflsh_impl.SuperAncillaryTwoPhaseSolution

Bases: object

C++ docs: SuperAncillaryTwoPhaseSolution

property T

(self) -> float

property counter

(self) -> int

property q

(self) -> float

class teqpflsh._teqpflsh_impl.ThermodynamicRegion

Bases: object

C++ docs: ThermodynamicRegion

add_pair(self, *, proppair: teqpflsh._teqpflsh_impl.PropertyPairs, Nsplit: int, and_kdtree: bool = True) None
get_kdtree(self, arg: teqpflsh._teqpflsh_impl.PropertyPairs, /) teqpflsh._teqpflsh_impl.L2Tree
get_starting_Trho_many(self, proppair: teqpflsh._teqpflsh_impl.PropertyPairs, val1: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], val2: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], T: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], rho: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], d2: ndarray[dtype=float64, shape=(*), order='C', device='cpu']) None
get_transformed_region(self, arg: teqpflsh._teqpflsh_impl.PropertyPairs, /) teqpflsh._teqpflsh_impl.QuadRegion2D
has_pair(self, arg: teqpflsh._teqpflsh_impl.PropertyPairs, /) bool
property propset_Trhogrid

(self) -> teqpflsh::properties::PropertySet<Eigen::Array<double, -1, 1, 0, -1, 1> >

property propset_bounding

(self) -> teqpflsh::properties::PropertySet<Eigen::Array<double, -1, 1, 0, -1, 1> >

property transformed_regions

(self) -> dict[teqpflsh::properties::PropertyPairs, teqpflsh._teqpflsh_impl.QuadRegion2D]

class teqpflsh._teqpflsh_impl.TrhoLookup

Bases: object

C++ docs: TrhoLookup

property T

(self) -> float

property d2

(self) -> float

property rho

(self) -> float

teqpflsh._teqpflsh_impl.add(arg0: int, arg1: int, /) int

add

teqpflsh._teqpflsh_impl.get_pair_from_chars(arg0: str, arg1: str, /) teqpflsh._teqpflsh_impl.PropertyPairs

get_pair_from_chars

teqpflsh._teqpflsh_impl.get_pair_log_scaling(arg: teqpflsh._teqpflsh_impl.PropertyPairs, /) tuple[bool, bool]

get_pair_log_scaling

teqpflsh._teqpflsh_impl.get_property_chars(arg: teqpflsh._teqpflsh_impl.PropertyPairs, /) tuple[str, str]

get_property_chars

teqpflsh._teqpflsh_impl.indexer(arg0: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg1: int, /) float

indexer

teqpflsh._teqpflsh_impl.indexer33(arg0: ndarray[dtype=float64, shape=(3, 3), order='C', device='cpu'], arg1: int, arg2: int, arg3: str, /) float

indexer33

teqpflsh._teqpflsh_impl.sample_random(arg0: teqpflsh._teqpflsh_impl.Geometry, arg1: int, arg2: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], arg3: ndarray[dtype=float64, shape=(*), order='C', device='cpu'], /) None

sample_random

class teqpflsh._teqpflsh_impl.teqpHelmholtzInterface(*args, **kwargs)

Bases: HelmholtzInterface

C++ docs: teqpHelmholtzInterface

teqpflsh._teqpflsh_impl.toms748_solve(arg0: collections.abc.Callable[[float], float], arg1: float, arg2: float, arg3: int, arg4: int, /) tuple[tuple[float, float], int]

toms748_solve