{ "cells": [ { "cell_type": "markdown", "id": "a45de111-fc9e-44ad-942e-c8d42fe87260", "metadata": {}, "source": [ "# Superancillary iterations\n", "\n", "The state of a two-phase point for a pure fluid can be fully specified by the temperature and vapor quality.\n", "\n", "When temperature $T$ is known, the vapor quality $q$ can be calculated as\n", "$$\n", "q = \\frac{y-y_{\\rm ch}'(T)}{y_{\\rm ch}''(T)-y_{\\rm ch}'(T)}\n", "$$\n", "where $y$ is a property of interest, one of $\\lbrace h,s,u\\rbrace$. In the case of density, one uses $v=1/\\rho$. If $0\\leq q \\leq 1$ the state point is considered to be single-phase.\n", "\n", "For a pure fluid there is no distinction between quality on a mass or molar basis because the molar mass of both phases are identical.\n", "\n", "If $p$ is given, one obtains $T(p)$ and uses the calculated $T$ to get the quality.\n", "\n", "When neither $T$ nor $p$ are given, one must work harder to determine the temperature and quality. That is the subject of this section.\n", "\n", "The residual function to be driven to zero can be implemented as something like:\n", "```\n", "double resid(double T){\n", " double q_fromv1 = get_vaporquality(T, val1, ch1);\n", " return get_yval(T, q_fromv1, ch2) - val2;\n", "};\n", "```\n", "One calculates the vapor quality with one of the imposed variables, calculates the other variable's value, and the residual to be driven to zero is then the difference between the given and calculated values of the second variable.\n", "\n", "What appears on its face to be a simple residual function is complicated in practice. The complication occurs because one must either\n", "1. Get a good guess value for the temperature to launch the iteration from and do some sort of unbounded Newton solver from this temperature\n", "2. Develop reliable bounds on the temperature that bounds the solution (if such a solution exists).\n", "\n", "A solution exists if you can find a $T,q$ pair that gives the specified values of both variables. The solution should be unique in most cases, $h,u$ being an exception." ] }, { "cell_type": "code", "execution_count": 1, "id": "775425d2-16ef-4fe9-81ca-9fbb223b22db", "metadata": { "execution": { "iopub.execute_input": "2025-01-06T11:32:29.183156Z", "iopub.status.busy": "2025-01-06T11:32:29.182740Z", "iopub.status.idle": "2025-01-06T11:32:29.497090Z", "shell.execute_reply": "2025-01-06T11:32:29.496760Z" } }, "outputs": [], "source": [ "import json \n", "import functools\n", "import tarfile\n", "\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "import teqpflsh \n", "import CoolProp.CoolProp as CP" ] }, { "cell_type": "code", "execution_count": 2, "id": "7f3a1de5-5f12-4013-b8db-b1ace2aeba36", "metadata": { "execution": { "iopub.execute_input": "2025-01-06T11:32:29.498707Z", "iopub.status.busy": "2025-01-06T11:32:29.498515Z", "iopub.status.idle": "2025-01-06T11:32:29.820454Z", "shell.execute_reply": "2025-01-06T11:32:29.820124Z" } }, "outputs": [], "source": [ "FLD = 'PENTANE'\n", "# Extract the JSON from the archive in LZMA compressed format, name is the REFPROP standard name\n", "with tarfile.open('superancillaryJSON.tar.xz', mode='r:xz') as tar:\n", " # for member in tar.getmembers(): print(member)\n", " j = json.load(tar.extractfile(f'./{FLD}_exps.json'))" ] }, { "cell_type": "code", "execution_count": 3, "id": "ba8319ce-aea3-42a8-8edc-23bcf8dfd07c", "metadata": { "execution": { "iopub.execute_input": "2025-01-06T11:32:29.821984Z", "iopub.status.busy": "2025-01-06T11:32:29.821901Z", "iopub.status.idle": "2025-01-06T11:32:29.840531Z", "shell.execute_reply": "2025-01-06T11:32:29.840326Z" } }, "outputs": [], "source": [ "sa = teqpflsh.SuperAncillary(json.dumps(j))\n", "\n", "AS = CP.AbstractState('HEOS',FLD)\n", "def calc(T, rho, AS, key):\n", " AS.specify_phase(CP.iphase_gas)\n", " AS.update(CP.DmolarT_INPUTS, rho, T)\n", " val = AS.keyed_output(key)\n", " AS.unspecify_phase()\n", " return val\n", "\n", "# Order of ms per variable, likely MUCH faster in C++\n", "sa.add_variable(k='S', caller=functools.partial(calc, AS=AS, key=CP.iSmolar))\n", "sa.add_variable(k='H', caller=functools.partial(calc, AS=AS, key=CP.iHmolar))\n", "\n", "def plot_base(ax):\n", " def plot_sat(q):\n", " approx1dh = sa.get_approx1d(k='H', q=q)\n", " approx1ds = sa.get_approx1d(k='S', q=q)\n", " \n", " Ts = np.linspace(approx1dh.xmin, approx1dh.xmax, 10000)\n", " S = np.zeros_like(Ts)\n", " sa.eval_sat_many(k='S', T=Ts, q=q, y=S)\n", " H = np.zeros_like(Ts)\n", " sa.eval_sat_many(k='H', T=Ts, q=q, y=H)\n", " \n", " ax.plot(S, H, color='k')\n", " return S[0], H[0]\n", " \n", " s0, h0 = plot_sat(q=0)\n", " s1, h1 = plot_sat(q=1)\n", " ax.plot([s0,s1], [h0,h1], dashes=[3,1,1,1], color='k')\n", " \n", " ax.set(xlabel='$s$ / J/mol/K', ylabel='$h$ / J/mol')\n", "\n", "Tc = sa.get_approx1d(k='S', q=1).xmax" ] }, { "cell_type": "markdown", "id": "f8ec8bf9-f285-4301-be33-0cf8280033f1", "metadata": {}, "source": [ "The problems begin with entropy as an input. Let's suppose that we consider the following $h,s$ coordinates for $n$-pentane. Along the saturated vapor curve, there are three intersections at the given value of entropy" ] }, { "cell_type": "code", "execution_count": 4, "id": "5faa2c12-992c-45de-8d6f-7cfa2b22ef0d", "metadata": { "execution": { "iopub.execute_input": "2025-01-06T11:32:29.841756Z", "iopub.status.busy": "2025-01-06T11:32:29.841675Z", "iopub.status.idle": "2025-01-06T11:32:29.935600Z", "shell.execute_reply": "2025-01-06T11:32:29.935370Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlwAAAG0CAYAAADn4/nCAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAbuxJREFUeJzt3Qd4U2UXB/BDSwuFMsreS4ayBQRRhggCFZUtIrKhbFkyqmBF2SAOBAQH8KEyKjJkiozK3sgUZCNDZLfQQmnv9/xPTWihYFuS3Iz/73kuvUluk9u0JCfve95zUhmGYQgRERER2Y2X/e6aiIiIiIABFxEREZGdMeAiIiIisjMGXERERER2xoCLiIiIyM4YcBERERHZGQMuIiIiIjtLbe8HoKSJjY2Vc+fOSYYMGSRVqlRmnw4RERElAcqZhoeHS548ecTL6+HjWAy4nASCrfz585t9GkRERJQCZ86ckXz58j30dgZcTgIjW5ZfWMaMGc0+HSIi8jSRkSJNm8btz58v4udn9hm5hBs3buiAieV9/GEYcDkJyzQigi0GXERE5HDe3iIbN8bt+/uLpE9v9hm5lP9KB2LSPBEREZGdMeAiIiIisjMGXERERER2xoCLiIiIyM6YNE9EREQiPj4iISH39smmGHARERGRiK+vyAcfmH0WbosBFxEREYlER4tMmxa3HxTEUS4bY8BFREREInfuiPTsGbffrh0DLhtjwEVERERxhU+bNbu3TzbFgIuIiIhE0qYVCQ01+yzcFgMuIiIiEomJEVm/Pm6/enWOctkYAy4iIiISiYoSqVUrbj8igr0UbYyFT4mIiChJwsPDJRqrGSnZGHARERHRI8XGxkpwcLAEBARI9erVxTAMs0/J5bhNwDV69GhJlSqV9OnTx3pdVFSU9OjRQ7JmzSr+/v7StGlT+fvvvxN83+nTp6VBgwaSLl06yZEjhwwYMEDu3r2b4Jh169ZJhQoVJE2aNFK0aFGZMWPGA48/adIkKVSokKRNm1aqVKki27Zts+NPS0RE5BgxMTHSrl07fZ/F/tatW+XKlStmn5bLcYuAa/v27TJ16lQpW7Zsguv79u0rP//8s4SGhkpYWJicO3dOmjRpYr0dfzgItu7cuSObNm2SmTNnajD1/vvvW485ceKEHlOrVi3Zs2ePBnSdOnWSlStXWo+ZO3eu9OvXT0JCQmTXrl1Srlw5qVevnly8eNFBzwAREZHtYSTr7bffllmzZlmvy5Mnj2TJksXU83JJhosLDw83ihUrZqxatcqoWbOm0bt3b73+2rVrho+PjxEaGmo99tChQxgDNTZv3qyXly1bZnh5eRkXLlywHjNlyhQjY8aMxu3bt/XywIEDjVKlSiV4zBYtWhj16tWzXq5cubLRo0cP6+WYmBgjT548xqhRo5L8c1y/fl3PDV+JiIgcLiICE4VxG/YNwxg+fLi+N6VKlcrw8/PT/a5du5p9pk4lqe/fLj/ChSlDjEDVqVMnwfU7d+7UxL741z/55JNSoEAB2bx5s17G1zJlykjOnDmtx2Bk6saNG3LgwAHrMfffN46x3AdGx/BY8Y/x8vLSy5ZjEnP79m19nPgbERGRabAq0RJypU8vP/zwgwwZMkRvGjp0qOZxAaYXycPKQsyZM0en8DCleL8LFy6Ir6+vZM6cOcH1CK5wm+WY+MGW5XbLbY86BgFSZGSkXL16VacmEzvmjz/+eOi5jxo1SoYNG5bsn5mIiMje8L7asWNH3X/nnXfEz89PBwoqVaoklStXNvv0XJLLBlxnzpyR3r17y6pVqzRR3dVgtQfyviwQwOXPn9/UcyIiIg9286ZIoUISExsrb/j46MIzzCCNGDFCihUrpof07NlTF6iRBwVcmMZDUjpWD1pgpOm3336TL774QpPaMd137dq1BKNcWKWYK1cu3cfX+1cTWlYxxj/m/pWNuJwxY0aN+L29vXVL7BjLfSQGKx6xEREROY1LlwT15THHU7JkSZ1WXLhwoa7ox4r/Fi1amH2GLstlc7hq164t+/bt05WDlg1Dna1atbLu+/j4yOrVq63fc/jwYf2jqVq1ql7GV9xH/NWEGDFDMIU/NMsx8e/DcozlPjBtWbFixQTHYJ4bly3HEBEROTsjbVoZ/MorUkpE/AICZPHixZIhQwYd4YJevXq55IyS0zDcSPxVioCVFAUKFDDWrFlj7Nixw6hatapuFnfv3jVKly5t1K1b19izZ4+xYsUKI3v27EZwcLD1mOPHjxvp0qUzBgwYoKscJ02aZHh7e+uxFnPmzDHSpEljzJgxwzh48KARFBRkZM6cOcHqx//CVYpERGSmzz77TN+H8B63evVqvW7x4sV6XYYMGYzLly+bfYpOKanv324dcEVGRhrdu3c3AgICNGhq3Lixcf78+QTfc/LkSSMwMFCXu2bLls3o37+/ER0dneCYtWvXGuXLlzd8fX2NIkWKGNOnT3/gsSdOnKjBHY5BmYgtW7Yk69wZcBERkVnCwsIMf29vY62IceaJJwzj1i0jNjZW38/w3jR48GCzT9FpJfX9OxX+MXuUjeKS5jNlyiTXr1/XKU0iIiJHOHv2rKbGhP/9t9y0XBkRIas2bZK6detqvvLJkye1Gwul/P3bZXO4iIiI6PGg1EOzZs10oVeZ0qUT3DZ8+HD92qVLFwZbnrxKkYiIiFImPDxcunRpJ35+mWXLli26mh8rEuXfFnkbNmzQVf9YGIY6XPT4GHARERF5mCVLlsjs2T/pPupqIdgqUqSI9faxY8fq1w4dOkjevHlNO093wilFIiIiDzN16nh57TWRDBlEPvzwQwkMDExw++o1a7TG5KBBg0w7R3fDgIuIiMgDdO7cVlKn9hYfH2/Zv3+XfPmliJ+flwwbFqLXd+3VRSQkRGYXLy7RItK6dWspVKiQ2aftNrhK0UlwlSIREdkTinyPGfOhzJgxWS5fvvfWnzt3Gnnrrc4yYMBQOX/+vJQvX16nGdEPuHjx4qaeszu9fzOHi4iIyANgpWH69FkkrmzUPVev3pVx4yaKREfLz/XrS3cRud68OYMtG2PARURE5AGWLl0qH330kXh5ifTrl1rmzvWRN9+MkdjYu3r74X37pOPu3dJRRPb362f26bod5nARERG5uRMnTmhOFhQsmF28vbvKL79sF5Egee65p/X6cRMmSKiIbMqTR0qXK2fyGbsf5nA5CeZwERGRPURFRcnzzz8vu3btksqVK2t9rTRp0iQ45vjx4zqFGBMTI9u3b5dKlSqZdr6uhpXmiYiISHr37q3BVtasWSU0NPSBYAvGjBkjRkyMDHjmGakUESESE2PKubozjnA5CY5wERGRrc2YMUPat2+vqw5XrFihvRHv99dff2nRU5/o6AS9FCV9ekefrkviCBcREZEH+/3336Vbt266P2zYsESDLRg3bpxER0dLjerVHXyGnoUBFxERkZu5du2aNG3aVPO3UEX+vffeS/Q4NK2eNm2a7g8cONDBZ+lZGHARERG5EWQKtWvXTo4dOyYFCxaUWbNmiRdqQSRiwoQJGpQ9++yz8sILLzj8XD0JAy4iIiI3ginCRYsWia+vr/z444+aLJ+Yy5cvy+TJk3V/yJAhmudF9sOAi4iIyE2sW7dOgoODdX/ixImPLO/w+eefS0REhLbyefnllx14lp6JleaJiIjcwLlz56RFixYSGxsrbdu2lc6dOz/0WKyoQ8CVYHQLqxJZuMBuOMJFRETk4rDK8PXXX9cG1WXLltWpwkdNEeJ2JNY/9dRT0rhxY4eeq6diwEVEROTiBg8eLBs3btQ6UMjbSpcu3UOPvXnzpibLw7vvvnsvof7mTZHs2eM27JNNcUqRiIjIhSHAsgRQM2fOlGLFij3y+K+++kouXbqkxU7feOONhDdeumTPU/VoDLiIiIhc1OHDh7WSvKWOVqNGjR55PEpAYBUjILk+dep4YYCfn8j+/ff2yaYYcBEREbkgrDBs0qSJfq1Zs6aMGDEiSa1+kFyfL18+adOmTcIbMbVYqpT9TtjDMYeLiIjIBYubdunSRQ4ePCi5cuWSOXPmJBytekhi/ejRo62jYajTlUBkpAiKn2LDPtkUR7iIiIhczJQpU+SHH34Qb29vmTdvngZd/wXHnzp1SnLkyCGdOnV68IDYWJGwsHv7ZFMc4SIiInIhW7dulT59+uj+2LFjpXoSmk7HxMTIyJEjdf+dd94RP+ZoORwDLiIiIhfxzz//SLNmzXR6EM2p+/btm+SVjEeOHJEsWbJI165d7X6e9CAGXERERC4Ao1StWrWSv/76S0s/fPvtt0nqf4h8L8voVu/evSVDhgwOOFu6HwMuIiIiF/Dhhx/KqlWrtKjpTz/9pEVOk2LFihWyd+9e8ff3l169etn9PClxTJonIiJycsuWLdOAC6ZNmyalS5dO8vcizwuCgoIkICDg4Qf6+IiEhNzbJ5tKZWCskUx348YNyZQpkzYUTeqnFiIicn8nT56UChUqyNWrV6Vbt27aBzGptm3bJlWqVNGSESdOnND6W2TO+zdHuIiIiJxUZGSkFjdFsPXMM8/IJ598kqzvt1SVR+7XfwZb0dEYPovbDwriKJeNcYTLSXCEi4iI4sPbc4cOHbQ6fLZs2WTnzp1SoECBJH//0aNHpXjx4no/+/bt++9pSDSs9veP24+IEEmf/jF/As9wgyNcRERErgtNphFseXl5aSX55ARbMH78eA22GjRokLScL29vkWbN7u2TTTHgIiIicjLIvbKsKERJh9q1ayfr+//++28N1mDQoEFJ+6a0aUVCQ5N/spQkDLiIiIicrLgpipreuXNHGjdurH0Pk2vixIly+/ZtefbZZ6VatWpJ+6aYGJH16+P2Ub2eo1w2xYCLiIjISdy9e1feeOMNLW6K/CuMUiWluGl8ERERMmnSJN1HsJbk74+KEqlVy3InzOGyMRY+JSIichJDhgyRNWvWSPr06ZNV3DS+6dOny7Vr1zRga9iwoV3Ok5KPARcREZETQIA1ZswY3f/mm2+kVKlSyb6P2NhYnU4ENLhGwj05B/4miIiITHb48GFp166d7qMhdYsWLVJ0P8uXL5c///xTMmfOLG3atLHxWZJHBlxTpkyRsmXL6nArtqpVq+ofmkVUVJT06NFDsmbNqv2jkICIVRvxnT59WpfLoi9Vjhw5ZMCAATp/Ht+6deu0wm+aNGmkaNGi1lUf8WGuvFChQpI2bVqt6IvVJUREREnNuUJx0/DwcKlRo4Z1lCslPv30U/3aqVMnnZYk5+GyARcq5o4ePVoLwe3YsUNefPFFnas+cOCA9RPCzz//LKGhoRIWFibnzp3TP+j4XdcRbGEVyKZNm2TmzJkaTL3//vvWY9AGAcfUqlVL9uzZo8Oz+CNeuXKl9Zi5c+dKv379JCQkRHbt2iXlypWTevXqycWLFx38jBARkatBnayOHTvKwYMHJXfu3Pqe4pPCCu94//v11191GrFnz542P1d6TIYbCQgIML7++mvj2rVrho+PjxEaGmq97dChQ6iob2zevFkvL1u2zPDy8jIuXLhgPWbKlClGxowZjdu3b+vlgQMHGqVKlUrwGC1atDDq1atnvVy5cmWjR48e1ssxMTFGnjx5jFGjRiXr3K9fv67nh69EROQZPv74Y33tT506tbFx48bHuq/OnTvrfTVt2tRm50e2e/922RGu+DBahSq8N2/e1KlFjHpFR0dLnTp1rMc8+eSTWqV38+bNehlfy5QpIzlz5rQeg5EplOi3jJLhmPj3YTnGch8YHcNjxT8Gnyxw2XLMw6A+Ch4r/kZERJ4Dsy+WGlvokfjcc8+l+L4uX74ss2bN0n3MxpDzcemAC72hkJ+F/KquXbvKggULpGTJknLhwgXx9fXVpMH4EFzhNsDX+MGW5XbLbY86BsERGopeunRJg73EjrHcx8OMGjVKey9Ztvz58z/GM0FERK7k7Nmz8vrrr+t7CBpLI+f4cUybNk1zl5Fz/Pzzz6fsTtBLMXv2uA37ZFMuHXCVKFFCc6u2bt0q3bp1k7Zt2+o8uCsIDg7WRpeW7cyZM2afEhEROQBmRxBsIdcXMy1Tp05NdnHT+BC0YSEZ9O7d+7HuSy5ditvI5ly60jxGsbByECpWrCjbt2+Xzz77TJfT4g8ahd/ij3JhlWKuXLl0H1/vX01oWcUY/5j7VzbiMlZF+vn5ibe3t26JHWO5j4fBqBw2IiLyLG+//bYu1sLsBmpvPe5qwhUrVuiHdqzKRyCXYn5+Ivv339snm3LpEa7ECr4hNwrBF1Z5rF69OkGNE5SBQI4X4CumJOOvJly1apUGU5iWtBwT/z4sx1juAwEfHiv+MTgHXLYcQ0REZPHVV19ZR7R++OEH66DB4/jyyy/1K+p4oTxRiqFIKoqtYmPBVNszXNTgwYONsLAw48SJE8bevXv1cqpUqYxffvlFb+/atatRoEABY82aNcaOHTuMqlWr6mZx9+5do3Tp0kbdunWNPXv2GCtWrDCyZ89uBAcHW485fvy4kS5dOmPAgAG6ynHSpEmGt7e3HmsxZ84cI02aNMaMGTOMgwcPGkFBQUbmzJkTrH5MCq5SJCJyb1iFiBX0eK0fPny4Te7z1KlTuuIe93n48OHHu7NbtwyjZs24Dftk0/dvlw24OnToYBQsWNDw9fXVQKl27drWYAsiIyON7t27a6kIBE2NGzc2zp8/n+A+Tp48aQQGBhp+fn5GtmzZjP79+xvR0dEJjlm7dq1Rvnx5fZwiRYoY06dPf+BcJk6cqMEdjkGZiC1btiT752HARUTkvs6ePWvkypVLX+ebNGlixMbG2uR+hw4dqvf54osvPv6dRUQYBsZhsGGfbPr+nQr/2GHgjJIJKx8xn48E+pQ0KyUiIueEVJcXXnhBtmzZov0RUTYoQ4YMj32/KH9UsGBBOX/+vMybN0+aN2/+eHeIlYn+/nH7EREirFRv0/dvTtISERHZUa9evTTYwiKuhQsX2iTYAnRTQbCF1nTotELOjQEXERGRnSBBHonySJKfPXu2TZLkLb7++mv92qFDB13ERc6NARcREZEdbNy4UUe3YMSIEVK/fn2b3TeKa1v6+rZv395m90v249J1uIiIiJy1knzTpk01z6pZs2YyePBgm97/999/r2WIUIKoePHitrlTNM0OCbm3TzbFgIuIiMjGSfIItlAEG5Xkp0+f/njV3++DtW4zZ87UfXRYsRlMS37wge3ujxJgwEVERGTDYAh9EdFyLiAgQHv8ouevLaGlHQp3o1sJOqvYTHQ0mjLG7QcFcZTLxhhwERER2Qiqvn/zzTfi5eWlSfJPPPGEzR/DMrqFlYnx29c9tjt3RHr2jNtv144Bl40x4CIiIrKB9evXa59EGDVqlNSrV8/mj3H37l1tCQRt2rSx7Z17e4s0a3Zvn2yKARcREdFjQvNoJMcjIMI034ABA+zyOGFhYfLPP/9oo+q6deva9s7RhzE01Lb3SVYMuIiIiB7DzZs3dXrv4sWLUrZsWZ1StGWSfHyh/wZETZo0ER9bT/nFxGCYLm6/enWOctkYAy4iIqLHSJJHHazdu3dLtmzZZNGiRZLeTi1xMHo2f/583X/sNj6JiYoSqVUrbp+tfWyOhU+JiIhSaPjw4TrqhNGmn376SQoVKmS3x8J04qVLl3Q6sZYlMCKXwYCLiIgoBRBgvf/++7o/efJkqY5pODuyTCc2btxYUqfmBJWrYcBFRESUTL///ru0bt1a99G+p1OnTnZ9PFSVR+Nru00nkt0x4CIiIkoGJMcjSf7WrVtSp04dmTBhgt0fc9euXVq5HkVUX3jhBbs/HtkeAy4iIqIkunPnjpZ/OHXqlBQtWlTmzp3rkOm9ZcuW6deXXnpJfNGCh1wOJ4GJiIiS0bYHBU4zZswoixcvlixZsjjksZcuXapfGzRoYL8HwapEw7Df/Xs4jnARERElwRdffCFff/211thC256nnnrKYVOY27dv1/3AwECHPCbZHgMuIiKi//Drr79K3759dX/MmDHy8ssvO+yxf/nlFx1dK1++vOTJk8d+D3Tzpkj27HEb9smmOKVIRET0CH/++ae8/vrrEhMToysT33nnHYc+/rp16/QrEvTt7tIl+z+Gh2LARURE9BDXr1+X1157Ta5evSpVqlSRadOm2a1tz6MKnkLNmjXt+0B+fiL799/bJ5tiwEVERPSQVjotW7aUP/74Q/LmzSsLFiyQtGjw7EDnzp2To0ePapBXrVo1+z6Yl5dIqVL2fQwPxhwuIiKiRPTv31+WL18ufn5+WnQ0d+7cDj8Hy+jW008/LZkzZ7bvg0VGiqDGFzbsk01xhIuIiOg+aNXz+eef6/7//vc/qVSpkinnsWnTJv1ao0YN+z9YbCwivHv7ZFMc4SIiIopn5cqV8vbbb+v+iBEjtNCpWXbu3Klfn3nmGdPOgWyDARcREdG/Dh48aF2R2KZNGwkODjbtXHAOe/bs0f0KFSqYdh5kGwy4iIiIROSff/6RV155RW7cuCHVq1c3ZUVifEjWj4yM1P6JxYsXN+08yDYYcBERkceLioqSRo0ayYkTJ6RIkSLy008/SZo0aUw9p927d1sT5r2wgpBcGpPmiYjIo6GKe+fOnTVBPVOmTNq3MFu2bGaflo5wQSlHlWrw8REJCbm3TzbFgIuIiDwaEuO/++478fb2lh9//FGefPJJcZYK91CsWDHHPKCvr8gHHzjmsTwQAy4iIvJY8+bNk6FDh+r+pEmTHNM+J4mOHDni2IArOlpk2rS4/aAgjnLZGAMuIiLySNu2bZO2bdvqPhpTd+nSRZxpmhMV5h0acN25I9KzZ9x+u3YMuGyMARcREXmc06dPa49EJMs3aNBAxo0bJ84kPDxcIiIidL9AgQKOeVBvbxFLzTHsk00x4CIiIo+CYObVV1+Vv//+W8qWLSuzZ8/W/C1ngnMDlIRIly6dYx4UfSJDQx3zWB6IARcREXlUQ2oUNt27d6/kzJlTfv75Z8mQIYM4mwsXLuhXnKPDxMSIrF8ft1+9Oke5bIwBFxEReQTkRfXo0UNWrFihDakRbDlsui4FRVghR44cjnvQqCiRWrXi9jGdmT694x7bA7CSGhEReYSxY8daq8djGtGZ+xPeunXLOqVI7oEBFxERub25c+fK4MGDdf/TTz+Vhg0bijNDMj+kRV4VuQUGXERE5NY2bNhgLf/Qp08fefvtt8XZWQIus9sLke0w4CIiIreF4qEYzbp9+7Y0btxYxo8fL66SbwZmNs8m23LZgGvUqFE6/47VJUgqRNPRw4cPP/AJAQmSWbNm1Xnwpk2bWpfaxq/FghosWHaL+xkwYICuYolv3bp1UqFCBf2kUbRoUZkxY8YD54MKxYUKFdLh3ypVqmhBPSIiMjfx/OWXX5YrV65I5cqVre17XIFlKhGBIrkHlw24wsLCNJjasmWLrFq1SqKjo6Vu3bpy8+ZN6zGoHIxVKKGhoXr8uXPnpEmTJtbbY2JiNNi6c+eONi2dOXOmBlPvv/++9Rh0jscxtWrVkj179uhwdKdOnWTlypUJcgP69esnISEhsmvXLilXrpzUq1dPLl686MBnhIiILCIjI7Ww6bFjx6Rw4cKyePFix9WzsmHAhZ/DYbAqESNr2LhC0fYMN3Hx4kWMvxphYWF6+dq1a4aPj48RGhpqPebQoUN6zObNm/XysmXLDC8vL+PChQvWY6ZMmWJkzJjRuH37tl4eOHCgUapUqQSP1aJFC6NevXrWy5UrVzZ69OhhvRwTE2PkyZPHGDVqVJLP//r163pu+EpERCmH1+CmTZvqa2pAQIC+9rua+fPn6/lXrVrV7FMhG71/u+wI1/2uX7+uX7NkyaJfd+7cqaNe8RuRogM8aq5s3rxZL+NrmTJlEhSWw8jUjRs35MCBA9Zj7m9mimMs94HRMTxW/GO8vLz0suWYxGCYGI8TfyMiosc3aNAgmT9/vvj6+srChQv1td/VWN6X7k+DsSvMEGXPHrfFmy0i23CLgCs2Nlan+p5//nkpXbq0tUov/rNlzpz5gT9iSwVffL2/iq/l8n8dgwAJQ72XLl3SqcnEjrHcx8Ny0DJlymTd8ufP/1jPARERiUyePNmaGD99+nSpUaOGuKI8efLoV6TCWBLoHeLSpbiNbM4tAi7kcu3fv1/mzJkjriI4OFhH5SzbmTNnzD4lIiKXtmTJEunVq5fujxgxQt58801xVblz57Yu/rp8+bJjHtTPT2T//rgN+2RTLh9w9ezZU/+TrV27VvLly2e9PleuXDrdd+3atQTHY3gWt1mOuX+41nL5v47JmDGjtobIli2brnpJ7BjLfSQGKx5xH/E3IiJKGawMb9Gihc54YGETPtS6MiTNFyxYUPcPHTrkmAf18hIpVSpuwz7ZlMs+oxhiRbC1YMECWbNmja5Cia9ixYri4+Mjq1evtl6HshEoA1G1alW9jK/79u1LsJoQKx4R/JQsWdJ6TPz7sBxjuQ9MW+Kx4h+D//C4bDmGiIjsW2sLq8nRDqd+/fo6regO9assKTJ4n3IIrIh84YW4zZGrIz2F4aK6detmZMqUyVi3bp1x/vx563br1i3rMV27djUKFChgrFmzxtixY4eu9oi/4uPu3btG6dKljbp16xp79uwxVqxYYWTPnt0IDg62HnP8+HEjXbp0xoABA3Sly6RJkwxvb2891mLOnDlGmjRpjBkzZhgHDx40goKCjMyZMydY/fhfuEqRiCj58LpfuHBhff2sVKmSER4ebriLQYMG6c/VuXNnxzxgRISlKETcPtn0/dtlAy78cIlt06dPtx4TGRlpdO/eXZcFI2hq3Lix/ueM7+TJk0ZgYKDh5+dnZMuWzejfv78RHR2d4Ji1a9ca5cuXN3x9fY0iRYokeAyLiRMnanCHY1AmYsuWLcn6eRhwERElz40bN4wKFSroa+cTTzxh/P3334Y7WbRokf5sJUqUcMwDMuBKkaS+f6fCP2aPspHoqkesVkQCPfO5iIgeDTm6r776qvzyyy+SPXt2LV6NTiDu5OrVq9opBW/TWK1oSaS3G5SC8PeP24+IYPFTG79/u2wOFxEReSYEIEiMR7CF6vFLly51u2ALAgICtHMJ4Gcl18aAi4iIXApWIM6aNUtXiP/444/aV9ddofE24Ock18aAi4iIXMbEiRNlzJgxuv/1119LYGCguLPmzZtbR7juL3Nkcz4+IiEhcRv2yaYYcBERkUsIDQ2V3r176/7w4cOlXbt24u5KlSql5SGQs/b999/b98F8fUU++CBuwz7ZFAMuIiJyemFhYfLWW29p/lb37t3l3XffFU/RpUsX/frFF1/Yt81PdLTIpElxG/bJprhK0UlwlSIRUeLQuq1atWr6+ti4cWMd6UL+lie9P+TNm1ciIiJk+fLlWtzVLrhKMUW4SpGIiFweuoMgwMCb2fPPP6/Tap4UbAHexLEqE0JCQuw3yoXntVmzuM3DnmNH4AiXk+AIFxFRQv/8849Ur15d27I99dRTsmHDBsmSJYt4IvTnLVKkiLYvWrRokbz22mtmnxL9iyNcRETkssLDw+Xll1/WYCt//vyycuVKjw22IGfOnPL222/r/jvvvCNRUVG2f5CYGJF16+I27JNNMeAiIiKncvv2bc3V2rFjh1ZaR0kEBF2ebvDgwVpt/s8//7SWxrApBHG1asVt9gjoPBwDLiIichoxMTHSqlUrWb16taRPn16TxJ988kmzT8spYNrq008/1f2RI0fqYgJyHQy4iIjIKVhKPsyfP198fX1l4cKFbl1FPqWFUBs0aKB1ud544w2JjIw0+5QoiRhwERGRUxg6dKhMmzZNUqVKpasR69SpY/YpOR08N99++63mdB04cED69Olj9ilREjHgIiIi02GqbMSIEbr/5ZdfSjOUJqBE5ciRQ3tJIvhCgDp58mSzT4mSgAEXERGZCsFD3759dR9BV1BQkNmn5PReeukla4CK1YsrVqww+5ToPzDgIiIi0yxdulTat2+v+5geCw4ONvuUXGrVYtu2bXWhAUYEN23a9Hh3iMryKM2JjVXmbY4BFxERmQKFTBEoIGBAn8SPP/5Yp8koaSxTish1u3nzpgQGBsq2bdvMPi16CAZcRETkcHv37pVXXnlFC3hi1R0Swb28+JaUXFjNicrzNWvW1Irn9erVk40bN6a8l2L27HEb9smm+NdNREQOdeTIEalbt662QkFT6nnz5omPj4/Zp+Wy0qVLJ0uWLNHn8tq1azrihZIaKXLpUtxGNseAi4iIHNqMGgEBegOWL19eFi9erAEDPR5/f39tf2QZNWzatKl88cUXyWt07ecngmKq2LBPNsWAi4iIHOLChQtSu3ZtOXPmjJQoUUIDhICAALNPy20gcF2wYIF06tRJYmNjpVevXtKhQ4ekF0fFlG6pUnEbp3dtjs8oERHZ3ZUrV7SUwdGjR6VQoULy66+/aj0psq3UqVNrIj16LSInbsaMGTrVeOLEif/+ZgRmL7wQt7GCvc0x4CIiIrsKDw+X+vXra+8/NF9GsJUvXz6zT8utVy8OHDhQm35ny5ZNdu3aJeXKlZOZM2c+eooxNlYkLCxuwz7ZFAMuIiKyG0xnvfrqq7J9+3bJmjWrrFq1Sp544gmzT8sjYPp2586d8txzz2nQ265dO83t+ueff8w+NY/EgIuIiOwCDZbxBh8WFiYZM2bUnK1SyA8ihylQoID89ttvMmrUKF0JihyvkiVLyv/+97/kJdTTY2PARURENnf37l1p1aqVLF++XPz8/LSifMWKFc0+LY/k7e2tVelRFLV06dJy6dIlrVBfq1YtOXTokNmn5zEYcBERkU1hhVznzp3lxx9/1MKcqAmFxG0yF8pwYIpx9OjRGgRj5BG5Xe+8844uaiD7SmVwTNEpoEJwpkyZtBAght6JiFwR3lLQE/Hzzz/XkZXQ0FBp3Lix2adF9zl58qQ2vf7555/1cubMmWXooEHydkSErnSUd99FGXuzT9Ot3r85wkVERDYzdOhQDbYAJQkYbDknlOZA0dlly5ZJmTJltEJ9/+BgeWLWLJlesKBEs6eluSNc/fr1S/IdT5gwIaXn5JE4wkVErm748OEacMHkyZOlW7duZp8SJQGah8+aNUs+eO89aXDunF73S8GC8k5wsK5sTJMmjdmn6Bbv38kKuJBgl9QaIGvWrEnq3RIDLiJycWPHjpVBgwbp/vjx46V///5mnxIlU+SlS+KHxtUikl5EbolI3rx5taYXKtajfRA5KOAi+2HARUSu6tNPP5W+ffvq/ogRI+Rd5P+Q64mKEmndWke8vnz+eRn1ySdy9uxZvQnvT2gZ1LNnT52OpHsYcLkYBlxE5IowddijRw/dDwkJkQ8++MDsUyIbuX37tubhffzxx/Lnn3/qdWgX1LBhQ+ndu7fUqFFDZ7Q83Q1HBFxIsvvmm2+sdTxQTK1jx476wJQ8DLiIyNV8/fXXWv4BUOdp5MiRfAN2ZTExIuvXx+1Xr44CXtYyH6in9tlnn2mnAAs0IMd7fps2bSRnzpziqW7YO+DasWOH1KtXT2t5VK5cWa9D6wa0cUD/pgoVKqT87D0QAy4iciXoy9e+fXstA4EFVcjbYrDl4m7eFLHkaUVEiKRHJldCBw8e1MDru+++k1u3blkbZqN9E6YcERegHIgnuWHvgKt69epStGhR+eqrr+JqdvxbWRhP+PHjx7WVACUdAy4ichWzZ8+Wt956S0c+kNODMhAMtjwj4Ir/njV37lyd5dq6dav1ejQnb9GihbRs2VKeeeYZj/i7uGHvgAsjW7t375Ynn3zygei3UqVK1siXkoYBFxG5AlSPf+ONNzSxOigoSL788kuPeFP1CMkIuOLbv3+/Bl4oLXH58mXr9WhSjr8VBF+l3LiHpt0Ln+JOT58+/cD1Z86ckQwZMqT0bomIyEktWrRI3zwRbKE+05QpUxhskfZn/OSTT+TcuXNaTBV/I+nSpZNjx47pqlXcXqZMGV1UgYEaT12rl+IRLrQEQNdxzNs/99xzet3GjRtlwIAB2h0ey4Qp6TjCRUTODBXJGzVqJNHR0dqUGjlcnpar4/ZSOMKV+F3d1LZBP/zwg6xYsUL/biwKFCigKx3x94T0JB8fH3Fldp9SvHPnjgZXGE5G7hbuBk1KUVkYjTFZmTZ5GHARkbPCQqjXXntNywQ0b95c30QtubvkRmwYcMWHxthLlizRJuYIvrC4zgI9HBs0aCCBgYFSt25dyf5v4VW3fP82HtPNmzeNvXv36oZ9RwoLCzNeeeUVI3fu3AgajQULFiS4PTY21hg6dKiRK1cuI23atEbt2rWNI0eOJDjm8uXLxptvvmlkyJDByJQpk9GhQwcjPDw8wTG///67Ua1aNSNNmjRGvnz5jDFjxjxwLvPmzTNKlCihx5QuXdpYunRpsn6W69ev68+Ar0REzmLFihX6uobXp0aNGhl37twx+5TIhd28edNYtGiRvtdmy5ZN/64sW6pUqYyKFSsa7777rvHbb7+5zN9aUt+/H6t5dVRUlCbLnTp1Sk6cOCG//vqrzt9icwQMWZYrV04mTZr00FYTWD2DUTisokifPr0uWcV5W2Bo/MCBA1pbBBE4VlciETR+5Iqou2DBgrJz504ZN26cFvabNm2a9ZhNmzbpnDXqkWB+GsOk2PDcEBG5KoxGYOoHI1t4TcOqNFef/iFzpUuXTkdLkWR/4cIFfc9F6yC8l2OmDO+zqOeGoqrZsmXT5ufIFfzjjz9cP/crpRHd8uXLNTpFRHr/5uXlZTja/SNcGN3CyNa4ceOs1127dk0/qc2ePVsvHzx4UL9v+/btCX4u/Axnz57Vy5MnTzYCAgKM27dvW48ZNGiQjmZZvP7660aDBg0SnE+VKlWMLl26JPn8OcJFRM5k2bJlhq+vr74uNW7cOMFrILmpiAjDyJYtbsO+g507d86YMWOG0bJlSyNr1qwJRr+w5cyZ02jRooW+L+P9G+/zHjHC1atXL3n99dfl/PnzWosl/oYVLGbDiBui5zp16livwxxrlSpVZPPmzXoZXzF/jDIWFjgerQssdUVwDCJt5KdZYJTs8OHDcvXqVesx8R/HcozlcRKDT4wYPYu/ERE5U4I8cnUxwoCRrfivgeTGLl2K20yQO3duadu2reYI/v3337Jt2zb56KOPpFatWpoXjuvwt9i9e3ftbJMrVy6t+YURsH379jlF7PEoKc56xA+O6sLOWs4fwRbcf364bLkNX3PkyJHgdiSCZsmSJcExhQsXfuA+LLcFBATo10c9TmJGjRolw4YNe6yfkYjI1pYuXSpNmjTRYAsrzlHklNOIHsLPD0W17u2byNvbWwunYhsyZIimAiEAW7dunW5I5bl48aLMmzdPN0BJKgyqVK1aVasnYB/v0S4fcDVr1kx/aBQ2o+QLDg7WgNUCI1z58+c39ZyIyLMhjxXBFpbw4zUeIw0MtjyIl5eIkxYoTZs2rc42YXv//fcTBGBhYWE6KxUeHq655NgsnnrqKQ2+ELihBAWKtWMWy6UCri+++EKXB69fv14Lmt3/nxJ1usyEoUbLSByGKS1wuXz58tZjECHHhxIXWMJq+X58xffEZ7n8X8dYbk8MhkdZOoOInAVqJmFEC8EWXtu///57BlueBuUaAgPj9pcvN32UK6kBmOW9GwvVkMpj2Y4ePSqHDh3SDUn6MGPGDJ22dKmAC8PMqM2CHxoRZvxqw9g3O+DCNCACntWrV1sDLIwiIQpGrTDAsOO1a9d0VUTFihX1ujVr1mgeGoYiLce89957+iJkefHBikZ0SbcMVeIYPE6fPn2sj49jcD0RkbPDynKMaDHY8nCxsSJhYff2XUjq1Kn1vR4b8rrwN4wKBRjZwqALPlAcOXLE+t5uipRm5WO1wIgRI4yYmBjDLKiXtXv3bt3wo0yYMEH3T506pbePHj3ayJw5s9b8QJ2whg0bGoULFzYiIyOt91G/fn3j6aefNrZu3Wps2LDBKFasmK6QiL+yET9r69atjf379xtz5swx0qVLZ0ydOtV6zMaNG43UqVMb48ePNw4dOmSEhIQYPj4+xr59+5L8s3CVIhGZYeHChfp6hdcfrACLjo42+5TILFiZiLAAmwmrFB8HYpE1a9ZoXU1L3ThsZcqUsd6Olbb2WNmY1PfvFAdcKJVw9OhRw0xr1659YNkotrZt2yYofIqACb8AFD49fPjwA4VPEWD5+/sbGTNmNNq3b//Iwqd58+bVQC6xwqfFixfXZdSlSpVi4VMicnoopYMPi3jteeONNxhseToXDLhi/h30+fzzzxPEAWXLljUmTpxoXLlyxe7nkNT37xS39unbt6+W4H/33XdtP+zmgdjah4gcCSu7UPgZuS8o3Py///2P7Xo8nZ1a+9jDvn37dPUiypWEhoZqiSo0ycaUeKdOnTRNyFGN1ZP6/p3i/12od4FK7itXrpSyZcs+MN8/YcKElN41ERHZEYKr9u3ba77qW2+9JdOnT2ewRU7v2LFjsnfvXq0Nh7IRyD3E3+3ly5c1TwtBlzPXi0v9ONHl008/rfv3t7BxVFRJRETJg7ZkXbp00X2MBEydOtW0ZfLkZDBwEhJyb98JREVFyU8//aSrDLGozd/fXwMrFD799NNPtfVe1qxZ9VhnDrYgxVOKZFucUiQie0Nv2d69e+t+z5495bPPPmOwRU7p6tWr2rd41qxZ1q4uGMxBgIXK8vcXJHeF9+9k/09DwTGUUSAiItcxZswYa7A1YMAADb4YbFEC0dEikybFbdh3sPDwcC05hXGg9OnTa+FdBFsoCh4SEqIt+9BQ3ZmCLbtOKf71118SGBioQ3evvvqqdv2uXbu20w/lERF5Irx5ffjhhzpaYPnQjH2mftAD7tzB0Gfcfrt2DplWNAxD/xbRSgqda/755x8NqJ599lnNBUf7PfQqRs6Wq0v2x5tvv/1WewQiCkXfIhT7zJYtm1YoRiImqrQTEZH58GaGNmKWYGvkyJHaw5XBFiUKQU2zZnGbnQOcS5cuySeffKKdav78808dtHn55Ze1qDim5qB169ZSr149twi2bJbDhbL5qOK6aNEinW6sXLmyjnxhqXHevHltc6ZujjlcRGRLeGnHB2JMHQLe3OJ3wyBytNjYWO1z+PXXX8vChQu1swHgQwE+DEREROhUoqt9IEjq+7fNk+bRmxDBF5ZrolHkO++8Y8u7d1sMuIjIlm9saGGGFYkwefJka0szooeKiRFZvz5uv3p1m49yNW7cWAMti0qVKulK2TfeeEPf/1yVaQEXpQwDLiKyBRQy7dixo6Z4ICkey+nbIR+HyMGFT9FTGCOrKLDbqlUrLUEyePBgrf2Gv1FLn2NXZ7fCp02aNPnPY1CIDI2jX3rpJU2sJyIi+7t9+7amcixYsEDzXr777jsdPSBylMOHD+sI61NPPSVbt26V5cuXy82bNzXgatOmjW5+fn7iiZIdcCVl2A9PNpLgME+LKUWskCEiIvtB/gs+EGNUAQnIc+fOlUaNGpl9WuQBbt26JT/++KO+569fv16aNWum7XYwsopgq0OHDnqcpwZaDplSXLJkiXTv3l1Onz5tr4dwG5xSJKKUQq0irPDasmWLJh0jTwZL6YnsOaWIgRVMGX7//ff6HgaYxkagj4DLU+q83bB3L8WkqFatmibFERGRfaBMD5bOo8dcQECALFu2TGsYEdnDtWvX5MiRI1qN4MyZM1r1HVA7C3lZGNVidYLEMWneSXCEi4iS69SpUzqSdfToUc2b/eWXX7SuEZE9RrgwglqrVi2tvXny5Ekt34DuBRjRwvWeMqLllCNcRERkH3/88YcuTEL3j0KFCmnuVtGiRc0+LXJlCLDijcFg9BSrXbdt26ZThFhVmC5dOsmcObOcPXtWChQoIBMnTjT1lF0JAy4iIheza9cunUZEtW6sBkOwxWkcsoWYmBhZuXKlJsCjpibKjFj+5ipWrCh79uyRfPnyuVxxUpcMuNCHq2HDhvrEExGRY2EV2CuvvKLTGHgdRjNfTPEQPa6bFy9KVO7c8kxsrDRHTTcRqVq1quZmoeUOoJE0pYxXSptXI8JF5WLU2EDTSSIisi+83tatW1eDrZo1a8qaNWsYbFGKIYUb5UOwwhV9kLHCNWtsrGQXkV49e8r+/ftl06ZNGnD5W3K7yLFJ86iztXHjRmv/xPPnz2suAUa+8MkrS5YsKT8jD8WkeSJ6lDlz5mgzX0zxNGjQQHNqPL2uEaXMgQMH5IknnpA0adJIhQoVdJoQPTd79egh59eskaxZs4pvuXKo8WD2qboEh7b2YfPqx8eAi4geBm+GWA0GeF2dOXOm+Pj4mH1a5GKFcTGahdwsrDb84Ycf9G8JNbRQHR6jWAULFjT7NF2SQ1cpImkT28CBA+Wff/7RxtXYgM2riYhSBp+H33vvPRk1apRe7tWrl3z66aceu/yekm/Hjh3awxAjpAi6LO33UEsL0HLHKjJSJDAwbn/5cpSGN+Wc3RXrcDkJjnARUXyYOuzSpYt8++23ennkyJHa+Jerw+i/XL58WaKjo7U2G7q9WIqTFitWTDp16qT9DHGbvZtXe4obrMNFROS6venQdBqpGhjNmjZtmk75ECVl+nnAgAEarGO/c+fOOrKFQKt69eoM2E3EgIuIyIlgtRhyYLEwKW3atJp3g8tEiUEB0hkzZmiie9euXeXJJ5/UygFIjMcE1tNPP63FS8l8DLiIiJwEyu7Ur19f3yxRzRsjXOhJSxQfpgvRMxMJ8PiKygFIeA8KCtJWTyhSikCLnAsDLiIiJ4DV3qgej4bAefLk0WrfpUuXNvu0yMls2LBBmjdvrm13LDBViClDBF5IiGew5WYB1/bt2zWBE6sS0b8LPZYsG/orERFR0mCZPmprYToRFb0RbHGJPkFkZKT89NNPWoQUq1UxZYik+Bw5ckjbtm0TVIF/bCg1EhJyb5+cY5UifukIrJBbcOLECS2chu3q1asSEBCgfxCUdFylSOSZMCXUrFkzfWNFDcOlS5eyejzp9DI6uhw9elRXFyLZ/eTJk/q+u3XrVh3F8vX1Nfs0SRywShHD3nhhQLXa+E6dOqWBFxERPRpycJDojIbByN368ccftb0KeSa8Yc+ePVu++eYbzeM7d+6cziChjAPea9OlS6fHValSxT4nEB0tMm1a3H5QEEe5bCzFAdfzzz+vEfj9AReGwTkUTkT0cJhYeP/992X48OF6GW+oCL5YPd4z/xawIhW//3nz5ulIJ+BvAVPNCMTRWcAh0Be5Z8+4/XbtGHCZGXA1adJEypYtK+XKldNPZR999JFexhQiERH9NyzZR4LzrFmz9DICrw8++ID1kTwM8p8xdYzRzRYtWuhoFpQsWVL/Pt566y3Jnh1tpB3I21ukWbN7+2RewIXRLETikydPlkuXLul1xYsX16bVzz77rM4plylThvPKREQPmTJq2rSprF69Wry9vbXlCguaep4OHTpowP3rr79KzZo1pWfPnpqrhUAL76WmBd9p04qEhprz2B4gWQHXuHHjEhRbsyTKYxszZowcP35cl6RixcTevXvtcb5ERC4JKRgvv/yy7Nu3T/z9/SU0NFSni8j9Ibd5+vTpOpKFvsOYLkTrJgTeCLiCg4PFKcTEiKxfH7dfvTpHuZy5lyLaByD4+v3336VHjx62uluPwFWKRO4LH0ARbOGDKnrYYWUiayW5/9Tx4sWLNTfrl19+0Vytvn37yoQJE+TYsWPavgkzQk6FvRRdp5ciPrWhKjIrIxMRxcG0EaYR8aKM/BwEW1xY5N6+/PJLGTp0qDX1BmrXrq2jWXD/YjPyDKw0T0RkJ1hdhrwcTB/hzXbBggVcZOSGbt68qVPESHJHAVv0wESwhY4B7du315ytIkWKmH2aZDIGXERENobpI5R8wApEaNmypebwpEmTxuxTIxv+jhFoYWZnypQpMmDAAK2PhYALrXfQTDowMFDzmonAi08DEZHt3L59W0c1LMEWWqB99913DLbcBLqpfPHFF5qD9+abb+p1rVu31mT4Ro0aaZkHFK999dVXGWxRAvxrICKyEbQ0Q73C3377Tcs+4I0ZNQvJ9UezwsLCNAEe3QAQVANKOSA3L2fOnFoZnrXU6FEYcBER2cCRI0d0OglvwliphJyeunXrmn1a9BiioqI0Hwu9C2vVqmW9HsW/O3furCNcllVpbhFsYVWi7QoX0H04pWhDkyZNkkKFCul/UMzlb9u2zexTIiIHWLdunRasRLCF14BNmzYx2HJhf//9t04Poo9hdHS0vp6jsXiXLl1k+/btsnv3bi19xAUQlBwMuGxk7ty50q9fPwkJCZFdu3bpJ6B69erJxYsXzT41IrIjJMO/9NJLmtuDoAujIaVKlTL7tCiZULh7/PjxOn2YJUsW2bx5s9ZN27Bhg45eoa8hyj1UqlTJPUazHlaHC+2EsGGfbIoBl42gmB2GmJEsi1o7+I+Jzu7ffvut2adGRHYQGxurFcKx5B9lH1BFfM2aNZIjRw6zT42SMWU4e/ZsrZGF2lhYaYj2dagEj9fuQ4cOWacS3TbIuh9qh8WrH0a2wxwuG1UU3rlzZ4L2DF5eXlKnTh39lJQYJF1aEi8BiZdE5BpQJbxNmzYyf/58vYwil2hAjf/35PwwitW/f3+ZMWOGjkxaAirMSlh6ASMfz+P4+Yns339vn2yKAZcNoMAdlgJjpUp8uPzHH38k+j2jRo2SYcOGOegMichWzp8/Lw0bNtRcHrw5Y+UaygKQcwsPD5c5c+bo7w6jkH/++acGWwUKFNBRSsxOYN+j4QMDp8PthgGXSTAahpyv+CNc+fPnN/WciOjR0CcW9ZXOnDmjhS0XLlzIVmZOPpKFqV+U6ECgtXbtWu13984778iQIUOkZ8+eOhOB20lEIiNFAgPj9pcv5yiXjTHgsoFs2bLpf1isbIkPl9GoNjEogshCiESu46efftJpRFQXL1GihCxdupQ98Zx41mHWrFk6+oi8rHbt2kmrVq10dNIyE4GVh3Sf2FiRsLB7+2RTTDiwAUwrVKxYUVavXm29Dp+qcLlq1aqmnhsRPf4oyYcffqgNqBFsYUUicjMZbDkXvOauWrVKFy+ghyFmEA4ePKiBF7Rt21Yvc/qXzMIRLhvBf278h8aSYdRr+fTTT/XFGXkBROSaLP+HUcQUevfuraUD2LLFuQJiJLwjJxaBsQVei9E4/I033tDL/J2R2fgXaCP4VPXPP/9o/7QLFy5I+fLlZcWKFQ8k0hORazh9+rQWv0SRS5QJQIPijh07mn1a9C8sWsDKUCS643fz+uuvy+effy5vvfWW/p7wGkzkTFIZ+HhApkPSfKZMmTSh09IqgojMgUrxjRs31sLF2bNn1/wtJsc7R/ukEydOaPkG9DZ84YUXJEOGDPp7QocPlNphbuxjQLFTf/+4/YiIuFY/ZLP3b45wERHdVzkeLVzQ0gUdIxYtWiQFCxY0+7Q8uuYZ6p0hAR5NwZGfderUKalRo4aW10FuHYItYLD1mHx8REJC7u2TTTHgIiIS0WrxAwcOlE8++UQv44185syZkp6f8k2BVd7Iyfr+++915ABQWLZChQpy+fJlTdcYPHiw2afpXlD09YMPzD4Lt8VVikTk8VAAE5XFLcEWcoPmzZvHYMvBrl27JgsWLLCOVmG0EcFW4cKFZcSIEZpX9/PPPzM31l6io0UmTYrbsE82xRwuJ8EcLiJzoFQAkuNReRz9TzGq1axZM7NPyyODrXz58unKUPwuihYtqj1pixUrpv0M2TbJAZjDlSLM4SIi+g9Ihkc5l4iICO30sHjxYq5uc+CUIYJb1MlCBXgUkK5evbr89ddfehsCrq5du5p9mp4FFfctHzZYfd/mGHARkcdB71M0nEbSNWC1G6YQsSKR7Jsnt3LlSvnmm290ahCX4bvvvpM+ffrI3LlzddUh6mqRCbD44N+ac2R7DLiIyKNcuXJF3nzzTX3jtxQtHjNmDAtjOgCmBjds2GC9jE4cKE6KGlrAdAqTxcSIrF8ft1+9Oke5bIyT4kTkUc2nUYEcwZafn5+ugPv4448ZbNkJpmjRCumXX37Ry3Xr1tWm33379pX9+/drvbMOHTqIvyVviMwVFYWoOG7DPtkUX2WIyCPMnj1bK5BHRkbqqjeshkOdLbItBFJY3Ynn+Ndff9Utc+bMGmxh2hClN1gvizwRR7iIyK0hT6h///46jYhgC2/8O3bsYLBlQ1h0gLwsTBGWKVNG+01CUFCQ5sqNHTtWLyM/i8EWeSqOcBGR20J/UzQvXrNmjV5Goczhw4eLN3NTbDaa9dlnn8mcOXM06AJMz6I6PJQuXVo3ImLARURuCqNYqBaPYpmY4poxYwbra9kAqryjdANGCBFwoeUOoF4WEuDbtGkjuXLlMvs0iZwOAy4iciuo5YyCmcgXunPnjgYCyNcqVaqU2afm8pYvX65FYp966inZvXu37nfu3FneeustraHFcg5ED8eAi4jcBqqUo/E0Vh8CAgK0h0HSNiXf2bNndWTwxIkTOpJVpUoVDapQ9R2V4QMCAmTatGlmnybZCirLs/mM3TDgIiK38Mcff+iU4YEDBzRHa/To0Zosz1GX5ImOjpalS5dqgIURrdjYWL3+vffe05WHhw8floIFC5p9mkQuhwEXEbk8VIlHyQckbiN/CBXLa9SoYfZpuZwLFy5oayO01rHAVCFysywNoxlsuXkvxUKF4vZPnmQvRRtjwEVELgs5WgMGDJDPP//c2qIH9baYtJ30khlYYYiANTQ0VIMqPHfIg2vXrp0WJS1RooTZp0mOdOmS2WfgthhwEZFLOnPmjLaE2bJli14ODg6WDz/8kFXjk2Dv3r1argHTrXjesOpw4cKF0qJFC11gkC9fPvHx8TH7NMnR/PxQ6+PePtkUX5mIyOWgVQwKmaJEARLi//e//8mrr75q9mk5tevXr+voH3Kzdu7cqRXga9eurbXJ0F+yWrVqehzytMhDeXmJcDWv3TDgIiKXERMTIx999JGOZGHaq0KFCjoVVqRIEbNPzWmhXyFWEmLaEJX2AaNXWFyAgKtHjx5mnyI5C/x9BAbG7S9fzlEuG2PARUQu4dy5c1rvae3atda2MahynjZtWrNPzelcvHhRp1azZMkiEyZMkPnz5+v1JUuW1AR4PI/Zs2c3+zTJ2WBFaljYvX2yKfZSJCKnt3LlSl09h2ALVeNnzZolU6dOZbCVCIz+5c2bVyZNmqSXu3XrpsnvGOlCZfi+ffsy2CIyAUe4iMipa0K9//77WlML0E4GJR+4cu6eU6dOaXFXVH9H0jumV7H6EInxgGlDbERkLgZcROSU0AMRjac3b96sl7t37y4ff/wxR7X+LYexePFiTYDHAgLks1WqVEkDLvSPLFu2rG5E5DwYcBGR01m0aJG0b99erl69KhkzZpRvvvmGjaf/tWzZMmnbtq1cilcv6cUXX9TcLARefn5+DLaInBADLiJyGrdv35ZBgwZpMjw888wzWpjTk1choj8kVmKiCjxKOBQvXlyDrdy5c2tQivysJ554wuzTJHeA2mshIff2yaZSGfhIRKa7ceOGZMqUSWvl4BM9kac5duyYTomhRhT069dPRo0aJb6+vuJp8LJ8/vx5yZMnjxZ2rVq1qo5cYaUm6o5t2LBBnn32WRZ5JXKh92/+byUi0/3www+6mg4vXChlMHPmTHnllVfE06AA6ffff6+5WQi4UAG+SpUqWtQVQZelEbelSCmRTUVHi0ybFrcfFMRRLhvjCJeT4AgXeerfPQpvfvfdd9ZAAsFX/vz5xVPExsZKWFiYBlmol4VpVUiTJo389ttvUrlyZbNPkTypebW/f9x+RASbVycRR7iIyKlh9WGrVq3kxIkT4uXlpeUf3nvvPY+ZJkMeVrZs2eTWrVvy2muvSQTe4EQ04b1z58763AQEBJh9muRJvL1FLItTsE825RmvbETkVO15Ro4cKcOGDdP9QoUK6TTac889J54yotW8eXNdiYlaWaj+jqr5SI7HSsOKFStapw6JHAolV0JDzT4Lt8WAi4gcWqQTbWWQ9A0YxUFFdAzHu/uCgG+//VZ69uypqwsRaGJbtWqVBlyoL0ZkupgYkfXr4/arV+col40xh8tJMIeL3B3KO3Tt2lX/xjNkyCCTJ0/W4MtdRUVFyYIFCzQ3a82aNXodVl2itANa7Hh7e2t1eCKnwRyuFGEOFxE5hfDwcB3Z+d///qeXsdoOSfLuXFtr7Nix2o4IhVsBU4R169aVChUq6OXSpUubfIZE5GgMuIjIbrZu3arThphSQ2L8kCFDZOjQoW6XGI+gEiN4Tz75pFTHVIyIBltYbYnCpChQWrBgQbNPk4hM5F6vekTkNE2nP/roI02OR64Sgg2MarlT/ShkY2CFYfr06WX48OE6qoXVhgi42rVrp6sNX3rpJZ06JCLyMvsEiMi9HDx4UKugI+BCsPXmm2/Knj173CbYQjmHTz75RKcF3377bb0OI1gY3apVq5ZezpEjh9SvX5/BFhFZcYSLiGxW7uDzzz/XpHAU70TF+ClTpsjrr78u7vCz/frrr5oAv3DhQh3Bg3/++Uf3EWwh0GQ5ByJ6GAZcRPTYTp8+rdNoa9eu1cuBgYEanKAXoCtD4IiK70uXLtXpQgvUykJx0jfeeEN8/m1/wmCLXB5WJbJwgd0w4CKix8pjmjVrlvTq1UuXRqdLl04mTJighTxdOQBB9XusrEQgieKk9erVkxIlSmhOVseOHaV8+fJmnyIRuRgGXESUIphOQ12tn376yVruAaUfihYtKq7oyJEjOm3YvXt3yZo1q6xbt06T4vft26cJ8IcOHXLpIJIoSXW4ChWK2z95knW4bMxlk+ZHjBihrUDwiTpz5syJHoNPpw0aNNBjkMQ6YMAAuXv3boJj8KKK2jiYNsAbxYwZMx64H1TCRvuRtGnTSpUqVWTbtm0PFDhEA168SPv7+0vTpk3l77//tvFPTOQ8lixZImXKlNFgC1NqWI2IRsuuFmwhoEKQWKNGDR3Bwv9jBF4oXjhz5kzdR7AFDLbII1y6FLeRzblswHXnzh3tR9atW7dEb8fqKARbOG7Tpk364olgCg1y408b4BisLMIqqj59+mgvs5UrV1qPmTt3rvTr109CQkJk165dUq5cOZ1euHjxovWYvn37ys8//yyhoaESFhYm586dkyZNmtj5GSByvGvXrmldqVdffVU/VJQqVUo/gAQHB7tUbS0kumMkC2122rZtK+vXr9c6Ya+88ormbUGzZs2kWLFiZp8qkeP4+Yns3x+3YZ9sy3Bx06dPNzJlyvTA9cuWLTO8vLyMCxcuWK+bMmWKkTFjRuP27dt6eeDAgUapUqUSfF+LFi2MevXqWS9XrlzZ6NGjh/VyTEyMkSdPHmPUqFF6+dq1a4aPj48RGhpqPebQoUPIOjQ2b9780POOiooyrl+/bt3OnDmj34N9Ime0dOlS/dvH32mqVKmM/v37G5GRkYaruHr1qjF58mQjIiLC+n8bP0vhwoWN4cOHG3/99ZfZp0hELgjv20l5/3bZEa7/snnzZp3yyJkzp/U6jEwhsffAgQPWY+rUqZPg+3AMrgeMju3cuTPBMfgUjMuWY3A7Pi3HPwZLxAsUKGA9JjHoqYbeS5YNFamJnBEqpmMFIkaDMXqLUR+MCI0fP16n2Z09qR8lHQAFSTGq9eOPP1r/DyJn6+jRo/Lee+9J3rx5TT5bIpNFRoq88ELchn2yKbcNuC5cuJAg2ALLZdz2qGMQlEVGRmqBQ0xNJnZM/Pvw9fV9II8s/jGJwRQMGl1atjNnzjzmT0xkeyiHgAKfmJJHDhOm1zH9/vzzz4szw3QnKr8jL2vFihV6XcuWLXUKFHmW8OKLL0rt2rX1QxQRacE5kbCwuO3fDypkO071SoOCiXhRf9T2xx9/iDtAkj4Sc+NvRM40qoXcJuQ0YVSrePHismHDBvn44491EYozwoejZcuWaf5kvnz5ZNCgQfLnn39am2Zj0QxWHGJRCxGRozlVlmv//v116uJRihQpkqT7ypUr1wOrCS0rB3Gb5ev9qwlxGcGPn5+ftuXAltgx8e8DU49IJo4/yhX/GCJXggUgXbp0kfPnz+uHHPy//PDDD/X/hLNOG+I80WZn8uTJ1uvRXgiLYCyV7i0FSomIxNNHuLJnz675T4/aMH2XFKgJhE+z8VcTrlq1SoOpkiVLWo9ZvXp1gu/DMbge8FioKB3/GOSD4LLlGNyOF/L4xxw+fFhLUliOIXIFV65ckdatW2tFdQRbmI7buHGjjBs3zimDLawIrlu3rnzwwQd6GauW0U4Iq43xfx85lChSmiFDBrNPlYjIdVcpnjp1yti9e7cxbNgww9/fX/exhYeH6+137941SpcubdStW9fYs2ePsWLFCiN79uxGcHCw9T6OHz9upEuXzhgwYICuLJw0aZLh7e2tx1rMmTPHSJMmjTFjxgzj4MGDRlBQkJE5c+YEqx+7du1qFChQwFizZo2xY8cOo2rVqrrZY5UDkT3Mnz/fyJUrl/4NYnUv/k/cunXLcDb79+83wsLCdH/evHl6vvny5dPVw7Gxsbr6l4hSCCt445r7xO2TTd+/XTbgatu2rf6A929r1661HnPy5EkjMDDQ8PPzM7Jly6bL2KOjoxPcD44vX7684evraxQpUkTLTNxv4sSJGlDhGCwl37JlS4LbsTS+e/fuRkBAgAZwjRs3Ns6fP5+sn4cBF5kBpRAaNWpk/f9TokSJR5YzMQM+RH399dfGs88+q+eID1KW4AofuPDBiYhsACWTQkLitn/LJ5Ht3r9T4R+zR9lIdGUkykNgxSIT6MneMDX+1VdfycCBA/VvD0VLsWgF5RGcpdTDqVOntKPE7NmzJSIiQq/DeaLoKhLhLasNiYhc4f3bqZLmicj+kGPYuXNnraUFlStXlq+//lrr1pnt8uXLsnXrVnn55Zf1Ms4LnwlR+wsJ8G3atOFiFCJ7iY4WmTYtbj8oCCtNzD4jt8IRLifBES6yN6ymRQI8VhxiP3369DqC1LNnT12N6wwjWig/AWfPnpVs2bLp+aJ/KYqWspchkQOaV1tGjjGqzObVScIRLiKywqgRRoj2o0eaiAQGBsqUKVOkYMGCpp0Tgir0N12wYIGOtuFcUGQV052WgAu1s4jIQfDBq1mze/tkUwy4iNwYcp+GDBkin3/+uU7NIYj57LPPtOq6GSNGaIOF4qSYKsRXS9sdBF1vvvmmttoJCAhw+HkRkYggfzM01OyzcFsMuIjc1OLFi6VXr15aEw5QY2vChAkadJkBAV+5cuXk0KFD1uswVYiRt0aNGullBltEJoqJEfk3t1OqV+colzsXPiUi2+RCNWzYUDcEW4UKFZKVK1fqyj5HB1vz5s2TWrVqye7du3VEDb0LUeAYU4Vo0/Xbb79pIryztgsi8ihRUSK1asVt2CebYsBF5CYwXYeGzeikgNEtS6mHAwcOaEV2R/n999+tjdvnz58v69at0ylEQML+X3/9ZW0sTUTkKRhwEbkBNJauUKGCNmy+deuW1KhRQ/bs2SOjRo1yyOgRVulMnTpVnnnmGSlfvrzuA6Y0hw0bpoGfZcowqe25iIjcCXO4iFzYpUuXNMj69ttv9TKmDMePH6/TdI5Iit+5c6d88cUXOnWIQA/QW/Tq1au6X61aNd2IiDwdAy4iF4TVfTNnztRcKBQLBSSfjx49WrJmzWrXx0ZDeARUmBLEyBpKO8BTTz2l54DkfORpERHRPQy4iFwMaml169ZNgx1AhXjU1Hr++eft/thos9O2bVt58cUXZcWKFfLWW2/Jvn37pGPHjvLss8+yOCkR0UMw4CJyEdeuXZMPPvhAp/BiYmI0Nwv5Ub1799ZpPHvAKsfp06drPS9L1Xck56Oi8u3bt3U0zZIQT0QuDpXl2XzGbhhwEbnI9CESzzGdB40bN5ZPP/1UChQoYPPHQ9sfrHJEIPXLL79o/aw0adLIu+++K0WKFJGjR4/KE088YfPHJSJyZwy4iJzYjh07tNchWvMA8qZQNd5eZR5QGwsrHP/55x/rdZg+RG6WZbUjgy0iN+6lWKhQ3P7Jk+ylaGMMuIicdPUhRpQwyoQRJn9/fwkJCZG3337bpmUVMC2IvCzkY/3www9StGhRvf/cuXNL+/btpUOHDgywiDzJpUtmn4HbSmXg1Zxcpts4ube7d+9qDauhQ4daSysgMX3MmDGSJ08emzwG/ssfPHhQSpUqJTdv3tT7xd/f6tWrdTTryJEjOnWIwqlE5EHQ29TSeuupp0S8WKrTlu/ffEUlchJYdYjpQ1RqB/QdRIK8repYIYD7/vvvddQMj7F3715d4YjSEt7e3hqAQfHixW3yeETkYhBg/fs6QLbHgIvIZFgJGBwcrFN6lmrsw4cPly5dumgg9LgsrXV+/PFHnUIEJMGjvyECriFDhjz2YxCRG4iMFAkMjNtfvlzEz8/sM3IrDLiITIJSC+gpiHILUVFRWsOqc+fOMmLEiMduMn3+/Hkd2k6fPr3mfqFJNCDAwmO0atVKsmTJYqOfhIjcZkoxLOzePtkUJ2iJTCrzgKm7jz76SIOtmjVrapsc5G89brDVr18/yZ8/v04fAqYpg4KCZNu2bTqViP6GDLaIiByLI1xEDs7T6tOnjwZXgOR0jHChrlZKq7QfP35ceyminAPKReTNm1cLo1oeo3nz5roREZF5GHAROcCJEydk4MCBmkcFGTJk0JWIKPOAfKrkwqjYwoUL5auvvpI1a9bodXv27NGAC+UcAgMDpWTJkjb/OYiIKGUYcBHZebnwyJEj5ZNPPtEK7l5eXppD9eGHH0qOHDlSdJ9z5syRHj16yJUrV/QyRsZeeuklDbQA04WcMiQici4MuIjsVE8L03wYxbK046lTp45MmDBBE9eTIzw8XObOnas9DNG0umDBghps5cuXTwuTYsN1RESPBT1ZQ0Lu7ZNNsfCpk2DhU/eA/04///yzDBo0SNvkAJLjP/74Y2nQoEGS87RwPwjUcubMKYsWLZJGjRrpiNiZM2e0UfXatWs10d4WZSOIiCjlWPiUyMHQ7xBFRNevX6+Xs2bNqiNcGJVKajsetPSZNWuW1s3CKBmCtpdfflmDq1deeUWvw32hIjwRkU1FR4tMmxa3HxTEUS4b4wiXk+AIl+v6888/te+hJSE+bdq00rdvXx3lwu80KWUi0FYHQdaCBQt06hD8/Pw0EZ6V34nIYc2r/f3j9iMi2Lw6iTjCRWRnmPJDHa0vv/xSR54wXYjE9WHDhml+VVJa7aCq/N9//62rClHKASpWrCidOnWSli1bJilgIyKyCaQoNGt2b59sigEXUTKh4TNWHaKhNKrFA6b9Ro8enaSEeJR0aNq0qfz6669y6tQpyZ07t1Z+R6mIjh07ytNPP+2An4KI6D5p04qEhpp9Fm6LARdREmGqb8aMGdoqB61zLKNRKFxaq1atR37vkSNHZPr06fLee++Jv7+/jm6hTMSqVaukdevWWnmeiMhUGGX/NwdVqlfnKJeNMeAiSkKO1bx58+T999/XfC0oXLiw1td6/fXXtbZWYm7duiXz58/X3CxLL8NixYppGYfPPvtMpwuZn0VETiMqSsTy4ZE5XDbHgIvoIbCeZOnSpToqtXfvXr0ue/bserlr166PrBCP1YkTJ07UJEpAUIY8rSeeeEIvP/PMMw76KYiIyBkw4CJKxLp163Tl4ebNm/UyRqNQ8qF37946JXi/a9euyezZs+W5556TcuXKSWRkpAZbhQoV0rysdu3aJSmRnoiI3BMDLqJ4tm3bpiNYSGi3lGZAkIVg6/52ORgBu337tpaB6Nevn+ZoYXUh+hui9U79+vW1XtbDphyJiMhz8J2ASET2798vjRs3lipVqmiwhWruPXv2lGPHjsmoUaMSBFso4zB27Fh58skntScioBxEqVKlpFKlStYcL7TyYbBFRETAwqdOgoVPzXH06FGtm/X999/riBUCpDZt2uhKREwHWqBG1sqVKzUBHq17UHfLkgR/+PBh63FJbd1DROR0WPg0RVj4lOg/Aq3hw4fLd999Zy042qxZMx2xeuqpp6zHoXQDWumgbANysSyeffZZnT7EKkUGWUTkFhBgcQzGbjjC5SQ4wuW4QGvEiBHar9ASaKGpNEa5UFPL4sCBA5qXhdpba9as0d8LipqiYCkCr9KlS5v4UxARkbPgCBdRPMjFwojW/YEWpg4tJRoQZG3fvl1XFOI/DXK58Hnkr7/+0hWGJ0+eZE4WEbn3lKIlleLkSU4p2hjfPcjtAy0UGi1RooRWiUewhTY8W7dulSVLluj04bfffqvlHDBqFRQUpD0S8+fPr9djRMxSzoHBFhG5vUuX4jayOZd8B8FIA6Z1sBIMy/ZRTBIjFci3iQ/FKqtXr67L9vEGipVl9wsNDdXVZjgGU0bLli1LcDtGOFBhHP3u8FhYeWapNm5x5coV7YWHUZHMmTPruVl67JE5jh8/rr8HBFoo14BAC4VHt2zZosVMEWghuMLvFceh3pa3t7eOemF4GNq2bStFihQx+0chInIMPz8s2Y7bsE+2Zbig5cuXG+3atTNWrlxpHDt2zFi0aJGRI0cOo3///tZjrl+/buTMmdNo1aqVsX//fmP27NmGn5+fMXXqVOsxGzduNLy9vY2xY8caBw8eNIYMGWL4+PgY+/btsx4zevRoI1OmTMbChQuN33//3XjttdeMwoULG5GRkdZj6tevb5QrV87YsmWLsX79eqNo0aJGy5Ytk/Uz4Xzx68BXSrkjR44YHTp0MFKnTq3PJzb8fjZv3mxcvnzZ+PLLL427d+8aMTEx+nvE7fh94fd8/vx5s0+fiIhcTFLfv10y4EoMgia8gVpMnjzZCAgIMG7fvm29btCgQUaJEiWsl19//XWjQYMGCe6nSpUqRpcuXXQ/NjbWyJUrlzFu3Djr7deuXTPSpEmjARwgUMMTvX379gQBYapUqYyzZ88+9HyjoqL0l2PZzpw5w4DrMSAYbtGiheHl5WUNtOrVq6dBNX6PCLLy5Mmj1+P3AwjU161bp7cTEXm8W7cMo2bNuA37ZNOAyyWnFBOD1QHxi1NiiqhGjRq6pN+iXr16WjPp6tWr1mMwRRgfjrG0czlx4oRcuHAhwTFYiYDimJZj8BXTiJaCl2ApeIk8oYdBMU3cl2XDlCclH57j1157TdvpzJ07VxtNv/LKK7J48WL9/bdu3Vp27dql04XNmzfX4yzwfTVr1mRZByIiiI0VCQuL27BPNuUWqxSR2IxGwePHj7deh0AJOV7x5cyZ03pbQECAfrVcF/8YXG85Lv73PeyYHDlyJLg9derUGvxZjklMcHCwlh2wQN4Qg66kwcgseh2ivMPq1av1OgRNKNlQrVo1va5Ro0YafAGS5VHyYcyYMRqAM8AiIiJHc6oRrsGDB+ub4aO2P/74I8H3nD17VnvWYfSic+fO4irSpEmjSfbxN/rvQAsJ788//7z2KERgheAWye2HDh3SUaw+ffpoJXgEWwi+EGwh0LI85wy2iIhIPH2Eq3///loD6VHirxo7d+6c1KpVS5f0T5s2LcFxuXLl0p538Vku47ZHHRP/dst1WM0W/5jy5ctbj0EZgfjQ9gUrFy3fT48HKwx/+uknGTlypOzZs8caPL300kty+fJlnc7FakT0QkSRUvwNoRQEVp8SERE5BcNF/fXXX0axYsWMN954QxOi72dJmr9z5471uuDg4AeS5l955ZUE31e1atUHkubHjx9vvR1JcYklze/YscN6DFZP/lfS/P24SvFBt27d0lWF+D1bEuGx0rR169a6onDixIl6Xfny5fV4/K7jL5IgIqJkiIhA65m4DfuUJG69ShHBFpby165dW/fx5mvZ4q8mRFkIvDmjLMScOXOMdOnSPVAWAuUDEFAdOnTICAkJSbQsRObMmXVF2969e42GDRsmWhbi6aefNrZu3Wps2LBBAwSWhUg5lG8YPny4lvqwBFr43VlWGdapU0ePu3LlijFs2DDj1KlTZp8yEZHrwwfWkJC4jR9ek8ytA67p06db34jv3+4vFVCtWjUdkcqbN68GT/ebN2+eUbx4ccPX19coVaqUsXTp0gS3Y5Rr6NChGrzhfhDkHT58+IEAAQGWv7+/kTFjRqN9+/ZGeHh4sn4mBlyGcfLkSaN3795G+vTprb9P7ON3Y7mMgBgjk9HR0WafLhERkZHU9282r3YSnty8GnlZ48aN07IOlj6HyJFr1qyZDBkyRC+jMnynTp20zEP27NlNPmMiIjcUHS1iyYcOChLx8TH7jFwCm1eTU0Ocj1WGaLe0atUq6/VYRejv7y+bNm3SVkq3b9/WVahVq1blCkMiIntCe7yePeP2sYCNAZdNMeAih0K/y3nz5smECRNk9+7d1utbtmypdcmaNGmiqzuxAhU9Mj/88ENTz5eIyGN4e4s0a3Zvn2yKARc5xKVLl2Tq1KnyxRdfJFoQtn379lreAUFY1qxZTTlHIiKPljatSGio2WfhthhwkV0dOHBAPv30U/nuu+8kKirqgdtRRw25WShSCgy2iIhMghza9evj9qtX5yiXjTHgIptDlfcVK1bIJ598Ir/++qv1erTXQTX406dP64gWipMWLVrU1HMlIqJ/4UNxrVpx+xERIunTm31GboUBF9nMzZs3ZebMmZoIf+rUqQS3YRQL3QAwtYg+lmjJQ0RE5Cn4rkePDSNWSIJHQBUZGanXpU2bVrp37y4lS5bUVkhot4NVhizpQEREnogBFz1WWYePPvpIfvvttwS3Ydqwd+/eMnr0aNPOj4iIyJkw4KJkF3ibOHGifPvtt3L8+PEEtxUsWFD69OmjxUmZ/E5ERHQPAy5K8mrDSZMmyTfffKO1tAAFShs2bKiXBwwYoGUdWJyUiIjoQQy46KGio6O1dhba7iBPK77ixYvLtm3btJ0BERG5AaxKZLc/u2HARQ84efKkjlgtXrzYOpoFGM3q1auX5MuXT0qUKGHqORIREbkSBlxkrZ2FmllIdF+7dm2C24oUKSLvvPOOlnbwYW8tIiL3dPOmSKFCcfsnT7IOl40x4PJwSHxHMIVgKzw83Hq9r6+vNGjQQEaNGsXRLCIiT3Hpktln4LYYcHmgmJgYmTFjhixfvlwWLlyoly1J8KiX9eKLL8prr72m5R2IiMhD+PmJ7N9/b59sigGXh600HDRokPzyyy+aEG+RO3duqV69uowfP17y589v6jkSEZFJvLxESpUy+yzcFgMuN4fRK6wyREmHv/76K8FtlinDMmXKmHZ+RETkJNApJDAwbn/5co5y2RgDLjevBv/MM8/I7t27rdelT59emjZtqsnxGNkiIiJSsbEiYWH39smmvGx7d+RMUIS0WrVq2tcQo1hz586ViIgIbTDNYIuIiMhxUhkYBiGnaJmDIqLXr1+XjBkz2ux+L1++LH5+fpIuXTqb3ScREblpWQh//7j9iAiWhbDx+zenFN0cexoSERGZj1OKRERERHbGES4iIiISQSeRkJB7+2RTDLiIiIgILUZEPvjA7LNwWwy4iIiISAQFsadNi9sPCuIol40x4CIiIiKRO3dEevaM22/XjgGXjTHgIiIiIhH0z23W7N4+2RQDLiIiIhJJm1YkNNTss3BbDLiIiIgIzXdF1q+P269enaNcNsaAi4iIiESiokRq1YrbZ6V5m2PhUyIiIiI7Y8BFREREZGcMuIiIiIjsjAEXERERkZ0xad5JGIahX2/cuGH2qRARkSe6efPePt6LsGqR/pPlfdvyPv4wDLicRHh4uH7Nnz+/2adCRESeLk8es8/AJd/HM2XK9NDbUxn/FZKRQ8TGxsq5c+ckQ4YMkipVKnHVKB8B45kzZyRjxoxmn47H4PNuDj7v5uDzbg4+7w+HMArBVp48ecTL6+GZWhzhchL4JeXLl0/cAf4z8j+k4/F5Nwefd3PweTcHn/fEPWpky4JJ80RERER2xoCLiIiIyM4YcJHNpEmTRkJCQvQrOQ6fd3PweTcHn3dz8Hl/fEyaJyIiIrIzjnARERER2RkDLiIiIiI7Y8BFREREZGcMuIiIiIjsjAEXpciIESPkueeek3Tp0knmzJkTPeb06dPSoEEDPSZHjhwyYMAAuXv3boJj1q1bJxUqVNCVL0WLFpUZM2Y46CdwD4UKFdLOBPG30aNHJzhm7969Ur16dUmbNq1Wih47dqxp5+tOJk2apM8/ntcqVarItm3bzD4lt/HBBx888Hf95JNPWm+PioqSHj16SNasWcXf31+aNm0qf//9t6nn7Ip+++03efXVV7VCOp7jhQsXJrgda+ref/99yZ07t/j5+UmdOnXkzz//THDMlStXpFWrVloMFe8FHTt2lIiICAf/JK6BARelyJ07d6R58+bSrVu3RG+PiYnRYAvHbdq0SWbOnKnBFP7zWpw4cUKPqVWrluzZs0f69OkjnTp1kpUrVzrwJ3F9H374oZw/f9669erVK0E7jrp160rBggVl586dMm7cOH0zmzZtmqnn7Ormzp0r/fr102Xyu3btknLlykm9evXk4sWLZp+a2yhVqlSCv+sNGzZYb+vbt6/8/PPPEhoaKmFhYdoWrUmTJqaeryu6efOm/u3iw0Ni8OHs888/ly+//FK2bt0q6dOn179zBLwWCLYOHDggq1atkiVLlmgQFxQU5MCfwoWgLARRSk2fPt3IlCnTA9cvW7bM8PLyMi5cuGC9bsqUKUbGjBmN27dv6+WBAwcapUqVSvB9LVq0MOrVq+eAM3cPBQsWND755JOH3j558mQjICDA+pzDoEGDjBIlSjjoDN1T5cqVjR49elgvx8TEGHny5DFGjRpl6nm5i5CQEKNcuXKJ3nbt2jXDx8fHCA0NtV536NAhlDcyNm/e7MCzdC94/hYsWGC9HBsba+TKlcsYN25cguc+TZo0xuzZs/XywYMH9fu2b99uPWb58uVGqlSpjLNnzzr4J3B+HOEiu9i8ebOUKVNGcubMab0On4ww4oJPQ5ZjMEQdH47B9ZR0mELE1MrTTz+tI1jxp23xXNaoUUN8fX0TPMeHDx+Wq1evmnTGrg2jthgtjP+3i16ouMy/XdvB1BWmuooUKaKjKEhRADz30dHRCZ5/TDcWKFCAz78NYQbiwoULCZ5n9AvE9LnlecZXTCNWqlTJegyOx/8HjIhRQmxeTXaB/6jxgy2wXMZtjzoGQVlkZKTmDNCjvf3225oDlyVLFp26DQ4O1umXCRMmWJ/jwoULP/T3EBAQYMp5u7JLly7plHlif7t//PGHaeflTvCmjhSEEiVK6N/zsGHDNA9x//79+neLDxD3547i+be8ttDjszyXif2dx38NR35ufKlTp9bXI/4uHsSAi6wGDx4sY8aMeeQxhw4dSpC8Sub+HpBHZFG2bFl9I+rSpYuMGjWKLTjIZQUGBib4u0YAhjzEefPm8YMYuSwGXGTVv39/adeu3SOPwfB+UuTKleuBVVuWVUS4zfL1/pVFuIzVLp78ovo4vwe8MWFK8eTJkzo68LDnOP7vgZInW7Zs4u3tnejzyufUPjCaVbx4cTl69Ki89NJLOq177dq1BKNcfP5ty/Jc4nnFKkULXC5fvrz1mPsXiuD1BysX+bt4EAMussqePbtutlC1alUtHYH/jJYhZ6xiQTBVsmRJ6zHLli1L8H04Btd7ssf5PWC1J/InLM85nsv33ntPc158fHyszzGCMU4npgxGEStWrCirV6+WRo0a6XWxsbF6uWfPnmafnltCmYFjx45J69at9bnH3zKeb5SDAOQkIsfL0187bAmpCAia8DxbAiykeyA3y7I6Hc83Al/k1eH3AmvWrNH/D/jwR/cxO2ufXNOpU6eM3bt3G8OGDTP8/f11H1t4eLjefvfuXaN06dJG3bp1jT179hgrVqwwsmfPbgQHB1vv4/jx40a6dOmMAQMG6CqjSZMmGd7e3nos/bdNmzbpCkU8v8eOHTO+++47fY7btGmTYFVRzpw5jdatWxv79+835syZo8/51KlTTT13V4fnEau1ZsyYoSu1goKCjMyZMydYlUsp179/f2PdunXGiRMnjI0bNxp16tQxsmXLZly8eFFv79q1q1GgQAFjzZo1xo4dO4yqVavqRsmD12vLazfCgQkTJug+Xt9h9OjR+ne9aNEiY+/evUbDhg2NwoULG5GRkdb7qF+/vvH0008bW7duNTZs2GAUK1bMaNmypYk/lfNiwEUp0rZtW/0Pev+2du1a6zEnT540AgMDDT8/P32xxItodHR0gvvB8eXLlzd8fX2NIkWKaJkJSpqdO3caVapU0bIcadOmNZ566ilj5MiRRlRUVILjfv/9d6NatWoaIOTNm1dfROnxTZw4Ud/08beLMhFbtmwx+5TcBsrD5M6dW59b/M3i8tGjR6234w2/e/fuWvIEHyAaN25snD9/3tRzdkV4/U3sdRyv75bSEEOHDtUPbXj9qF27tnH48OEE93H58mUNsPDBG2V/2rdvb/3gTQmlwj/3j3oRERERke2wDhcRERGRnTHgIiIiIrIzBlxEREREdsaAi4iIiMjOGHARERER2RkDLiIiIiI7Y8BFREREZGcMuIiIiIjsjAEXERERkZ0x4CIiIiKyMwZcREQu4oUXXpA+ffqYfRpElAIMuIiI7tO+fXsZMmRIore1a9dOGjVqlKzvsbf4j53Y+f3444+SNm1a+fjjj005PyISSW32CRAROZOYmBhZsmSJLF261K7fYyv/9dhff/219OjRQ7788ksNzIjIHBzhIiK3FhsbKyNHjpRixYrpKE/OnDl1FOhhNm3aJD4+PvLMM88k+THu/x5M/fXq1Uun/wICAvQxv/rqK7l586YGPRkyZJCiRYvK8uXLE9zP7du35e2335YcOXLouVarVk22b9+erMeOb+zYsXoec+bMYbBFZDIGXETk1kaNGqUBx7Rp0+Tw4cOyYMECqVGjxkOPX7x4sbz66quSKlWqJD9GYt8zc+ZMyZYtm2zbtk2Dnm7duknz5s3lueeek127dkndunWldevWcuvWLev3DBw4UObPn6/fi2MQlNWrV0+uXLmS7PMdNGiQfPTRRzr61bhx4yT/LERkJwYRkRurXr268e677yb5+GLFihlLlix56O1t27Y1GjZs+MjvqVmzplGtWjXr5bt37xrp06c3Wrdubb3u/PnzBl6CN2/erJcjIiIMHx8f4/vvv7cec+fOHSNPnjzG2LFjrffbu3fvRz42zs/X11fve/Xq1Un+uYnIvjjCRURu7bXXXpPRo0frSBHyma5evfrQYw8dOiTnzp2T2rVrJ/n+H/Y9ZcuWte57e3tL1qxZpUyZMtbrMM0IFy9e1K/Hjh2T6Ohoef75563HYKqwcuXK+hjJfexChQpJSEiIREREJPlnISL7YcBFRG7tnXfe0cAEQcknn3yi03QnTpx46PTcSy+9pPlTSfWw70GwFB+m/OJfZ5kCRI5ZSj3ssfPmzSvr1q2Ts2fPSv369SU8PDzFj0FEtsGAi4jcXvHixTU/aufOnRp8HDx4MNHjFi1aJA0bNkzWfafkexLzxBNPiK+vr2zcuNF6HUa8kDRfsmTJZD92wYIFJSwsTC5cuMCgi8gJsCwEEbktrNLLlSuXruDz8vKSqVOn6tQeEtfvh6m9HTt26KhRUqXkex4mffr0mlg/YMAAyZIlixQoUEDPH0n1HTt2TNFj58+fX0e6atWqpVOqK1askIwZMz72uRJR8jHgIiK3FRUVJSNGjJDTp0+Lv7+/5ketWbNGSzXc7+eff9Z8KawsfBRMAaZOnTpZ35NUyDXD/WP1IkakKlWqJCtXrnys882XL1+CoAv3x6CLyPFSIXPehMclInK65HrUvcLU46Ngeg55YF988UWSv8cezHxsIko+5nAREYlo8NKyZcuH3o7VjahphdGiOnXqJOl77MnMxyai5OMIFxFREqB4KBLY27ZtK8OHD09WYVQiIgZcRERERHbGKUUiIiIiO2PARURERGRnDLiIiIiI7IwBFxEREZGdMeAiIiIisjMGXERERER2xoCLiIiIyM4YcBERERHZGQMuIiIiIjtjwEVEREQk9vV/rtfDG6oM27oAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(1,1)\n", "plot_base(ax)\n", "hc = sa.get_approx1d(k='H', q=1).eval(Tc)\n", "sc = sa.get_approx1d(k='S', q=1).eval(Tc)\n", "plt.plot(sc, hc, '*', color='yellow', mew=0.7, mec='k')\n", "ax.axvline(97, color='red', dashes=[3,1,1,1]);" ] }, { "cell_type": "code", "execution_count": 5, "id": "54392e42-ab71-4139-b1e9-a0a06ddb4c09", "metadata": { "execution": { "iopub.execute_input": "2025-01-06T11:32:29.936797Z", "iopub.status.busy": "2025-01-06T11:32:29.936682Z", "iopub.status.idle": "2025-01-06T11:32:30.364876Z", "shell.execute_reply": "2025-01-06T11:32:30.364625Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "label (h,s coordinates)\n", "A [-5.743214751940169, -2941.112588584603]\n", "B [96.72730245435365, 37648.0894811022]\n", "C [96.72730245435365, 17648.0894811022]\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlwAAAG0CAYAAADn4/nCAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAadBJREFUeJzt3Qd4FGX3NvCTQKihhN6b9C4giDSRLihVEJUmHaRLU4ogGJqgIFWkiEiT3qUjvUsH6UhvwQAhQDLfdZ/3m/0nECBlN7Pl/l3Xkp3dye5kSXbOPs95zvEyDMMQIiIiInIYb8c9NBEREREBAy4iIiIiB2PARURERORgDLiIiIiIHIwBFxEREZGDMeAiIiIicjAGXEREREQOFtfRT0CRExoaKlevXpUkSZKIl5eX1YdDREREkYBypoGBgZIhQwbx9n75OBYDLieBYCtz5sxWHwYRERFFw+XLlyVTpkwvvZ8Bl5PAyJb5H5Y0aVKrD4eIiIgi4b///tMBE/M8/jIMuJyEOY2IYIsBFxERkWt5XToQk+aJiIiIHIwBFxEREZGDMeAiIiIicjAGXEREREQOxoCLiIiIyMEYcBERERE5GAMuIiIiIgdjwEVERETkYAy4iIiIiByMARcRERGRgzHgIiIiInIwBlxEREREDsaAi4iIiCIlMDBQnj59avVhuCQGXERERPRKoaGh0rdvX/Hz85Ny5cqJYRhWH5LLcZuAa9iwYeLl5SVdu3a13fb48WPp2LGjpEyZUnx9faV+/fpy48aNcN936dIlqVmzpiRKlEjSpEkjPXv2lGfPnoXbZ/PmzVKsWDGJHz++5MyZU2bMmPHC848fP16yZcsmCRIkkFKlSsmePXsc+NMSERHFjpCQEGnevLmeZ3F99+7dcvfuXasPy+W4RcC1d+9emTx5shQuXDjc7d26dZPly5fLggULZMuWLXL16lWpV6+e7X784iDYevLkiezYsUNmzpypwdSAAQNs+5w/f173qVixohw6dEgDulatWsnatWtt+8ybN0+6d+8uAwcOlAMHDkiRIkWkWrVqcvPmzVh6BYiIiOwPI1mdO3eWWbNm2W7LkCGDpEiRwtLjckmGiwsMDDRy5cplrFu3zqhQoYLRpUsXvT0gIMDw8fExFixYYNv3xIkTGAM1du7cqdurVq0yvL29jevXr9v2mThxopE0aVIjODhYt3v16mUUKFAg3HM2atTIqFatmm27ZMmSRseOHW3bISEhRoYMGQx/f/9I/xz379/XY8NXIiIiZzBkyBA9N3l5eRkJEybU6+3atbP6sJxKZM/fLj/ChSlDjEBVrlw53O379+/XxL6wt+fNm1eyZMkiO3fu1G18LVSokKRNm9a2D0am/vvvPzl27Jhtn+cfG/uYj4HRMTxX2H28vb1129wnIsHBwfo8YS9ERETO4vfff5d+/frp9f79+2seF2B6kaIurriwuXPn6hQephSfd/36dYkXL54kT5483O0IrnCfuU/YYMu837zvVfsgQAoKCpJ79+7p1GRE+5w8efKlx+7v7y+DBg2K8s9MRETkaLVq1ZKVK1fatkeOHKkDBfnz55eSJUtaemyuymVHuC5fvixdunSR2bNna6K6q8Fqj/v379su+HmIiIishnznjRs36vVKlSrJxYsXJVmyZLZBCCxQIw8KuDCNh6R0rB6MGzeuXpAYP3bsWL2OESZM9wUEBIT7PqxSTJcunV7H1+dXLZrbr9snadKkkjBhQkmVKpXEiRMnwn3Mx4gIVjziMcJeiIiIrISZmzp16ujXJEmSyKJFi2TXrl0aaOE8hdWJt27dsvowXZLLBlyIuo8cOaIrB81LiRIl5NNPP7Vd9/HxkQ0bNti+59SpU1oGonTp0rqNr3iMsKsJ161bp79UGDY19wn7GOY+5mNg2rJ48eLh9sE8N7bNfYiIiFxhRWKbNm00TQfnNpQ4QtA1dOhQvT9XrlxaGgmlligaDDcSdpUiYCVFlixZjI0bNxr79u0zSpcurRfTs2fPjIIFCxpVq1Y1Dh06ZKxZs8ZInTq10bdvX9s+586dMxIlSmT07NlTVzmOHz/eiBMnju5rmjt3rhE/fnxjxowZxvHjx402bdoYyZMnD7f68XW4SpGIiKz0448/6nkI5zicF/E1QYIEehsuadOmNfbv32/1YTqdyJ6/XTpp/nXGjBmjKwZR8BTJflhdOGHCBNv9mApcsWKFtG/fXkejEidOLM2aNZPBgwfb9smePbsmDqKm148//iiZMmWSqVOn6mOZGjVqpEOsqN+FYdeiRYvKmjVrXkikJyIickZbt26VHj166PVRo0bpTBHqT2IG6PDhw3puRO5WjRo1tLB31qxZrT5kl+OFqMvqgyDRVY9ISkQCPfO5iIgotly5ckVTY5B7/Mknn8hvv/0mLVq0kNOnT2t5I+QrX7hwQacScZ5CAfAhQ4ZYfdgud/522RwuIiIiihnM/jRo0ECDraKFC8nUfs3F6+hCkQc3NOCCtm3baus7jHBh1ggJ9RR1bj2lSERERC+H0SqsQvyseDKZ3jBI4s5r8L87zgRJId9QSZIqvjRt2lROnDghP/30kzx48EA++OADqw/bJTHgIiIi8kDTpk2TSZMmSb18PvJrLUO8HoXv/7v5Ygi6DsvyYsV0tSK6taA38bvvvmvZMbsy5nA5CeZwERFRbEHdSiz+evokWO4NyCBJ5UGE+xniJV5JM4h0PSLiHSfWj9MVMIeLiIiIXoDpQdSyRP5W74/LvTTYAi9UhPjvisjFHbF6jO6IARcREZGHQO/fevXq6VcUB+/R9tPIfeOD8N1UKOqYw0VEROQhBg0aJCdPntRK8vPmzZOUWSJZNd6XdSVjigEXERGRB0AR72+//daWMI+eiRIaIoIcrf+u/f+C8s/z+t/9Wd+J9eN1N5xSJCIicnPnz5+XJk2a6PWOHTtq32GFRPjqw/Vq6Avxltf/vlQfxoR5O2DARURE5MYeP36sxU3v3bsnJUuWlO+//z78Dvk/lOsVRsqVwNDwt2Nkq+Gvej/FHKcUiYiI3FiXLl3kwIED2poHdbTix4//wj4D5+6TqT8/kB4NSsuI/t3/l7OFaUSObNkNAy4iIiI3NWPGDJkyZYq25fn9998lS5YsL+zz77//yvTp03VKsXaXkSKFylhyrO6OU4pERERu6O+//5b27dvbVidWrVo1wv1GjhwpT58+1QryZcow2HIUBlxERERuJiAgQOrXr6/5WzVq1JCvv/46wv3QtBojYNCvX79YPkrPwoCLiIjIjaBjX/PmzeXs2bOSNWtWmTVrlnh7R3y6Hz16tAZlb7/9trz33nuxfqyehAEXERGRG8EU4dKlS7W46R9//KHJ8hG5c+eOTJgwwTa6hTwvchwGXERERG5i8+bN0rdvX70+btw4KVGixEv3HTt2rDx48ECKFi0q77//fiwepWdiwEVEROQGrl69Ko0aNZLQ0FBp1qyZtG7d+qX73r9/XwMu4OhW7GDARURE5OKwyrBhw4Zy8+ZNKVy4sE4VviqIwv1IrM+XL5/UrVs3Vo/VUzHgIiIicnF9+vSR7du3S9KkSTVvK1GiRC/d9+HDh5osD1999dVLE+rJvvgqExERuTAEWGYANXPmTMmVK9cr9//555/l9u3bkiNHDvn4449j6SiJARcREZGLOnXqlLRo0UKv9+rVS+rUqfPK/VECAqsYAcn1ceOy4UxsYcBFRETkgrDCsF69evq1QoUKMnTo0Ei1+kFyfaZMmaRp06axcpz0Pwy4iIiIXLC4adu2beX48eOSLl06mTt37mtHq5BYP2zYMNtoGOp0UexhwEVERORiJk6cqM2o48SJI/Pnz9eg63Ww/8WLFyVNmjTSqlWrWDlO+j8MuIiIiFzI7t27pWvXrnp9xIgRUq5cudd+T0hIiHz33Xd6/csvv5SECRM6/DgpPAZcRERELuLWrVvSoEEDnR5Ec+pu3bpFeiXj6dOnJUWKFNKuXTuHHye9iAEXERGRC8Ao1aeffir//vuvln6YNm1apCrEI9/LHN3q0qWLJEmSJBaOlp7HgIuIiMgFDB48WNatW6dFTRctWqRFTiNjzZo1cvjwYfH19ZVOnTo5/DgpYgy4iIiInNyqVas04IIpU6ZIwYIFI/29yPOCNm3aiJ+fn8OOkV6NARcREZETu3Dhgnz22Wd6vX379jqtGFl79uyRzZs3a8mIyOZ7kWMw4CIiInJSQUFBWtz03r178tZbb8mYMWOi9P1mVXkEaSh2StZhwEVEROSEkOzeoUMHOXjwoKRKlUpXGsaPHz/S33/mzBlZuHChrRQEWYsBFxERkRNCk2m04vH29tZK8lmyZInS948aNUqDtpo1a0Yp54scgwEXERGRk0HulbmiECUdKlWqFKXvv3HjhgZr0Lt3b4ccI0UNAy4iIiInK26KoqZPnjyRunXrat/DqBo3bpwEBwfL22+/LWXLlnXIcVLUMOAiIiJyEs+ePZOPP/5Yi5vmzp1bR6kiU9w0rAcPHsj48eP1OoK1qH4/OQYDLiIiIifRr18/2bhxoyROnDhKxU3Dmj59ugQEBGjAVrt2bYccJ0UdAy4iIiIngABr+PDhev2XX36RAgUKRPkxQkNDdToR0OAaCffkHPg/QUREZLFTp05J8+bN9ToKlDZq1Chaj7N69Wr5559/JHny5NK0aVM7HyV5ZMA1ceJEKVy4sA634lK6dGn9RTM9fvxYOnbsKClTptT+UUhAxKqNsC5duqTLZdGXKk2aNNKzZ0+dPw8LFXqLFSumtU9y5sxpW/URFubKs2XLJgkSJJBSpUrp6hIiIqLI5lyhuGlgYKCUL1/eNsoVHT/88IN+bdWqlU5LkvNw2YALFXOHDRsm+/fvl3379sl7772nc9XHjh2zfUJYvny5LFiwQLZs2SJXr17VX+iwXdcRbGEVyI4dO2TmzJkaTA0YMMC2z/nz53WfihUryqFDh3R4Fr/Ea9eute0zb9486d69uwwcOFAOHDggRYoUkWrVqsnNmzdj+RUhIiJXgzpZLVu2lOPHj0v69On1nOLj4xOtx8L5b/369TqN+MUXX9j9WCmGDDfi5+dnTJ061QgICDB8fHyMBQsW2O47ceKEgR93586dur1q1SrD29vbuH79um2fiRMnGkmTJjWCg4N1u1evXkaBAgXCPUejRo2MatWq2bZLlixpdOzY0bYdEhJiZMiQwfD394/Ssd+/f1+PD1+JiMgzfP/99/reHzduXGP79u0xeqzWrVvrY9WvX99ux0f2O3+77AhXWBitQhXehw8f6tQiRr2ePn0qlStXtu2TN29erdK7c+dO3cbXQoUKSdq0aW37YGTqv//+s42SYZ+wj2HuYz4GRsfwXGH3wScLbJv7vAzqo+C5wl6IiMhzYPbFrLGFHonvvPNOtB/rzp07MmvWLL2O2RhyPi4dcB05ckTzs5Bf1a5dO1m8eLHkz59frl+/LvHixdOkwbAQXOE+wNewwZZ5v3nfq/ZBcISGordv39ZgL6J9zMd4GX9/f0mWLJntkjlz5hi8EkRE5EquXLkiDRs21HMIGksj5zgmpkyZornLyDkuU6aM3Y6T7MelA648efJobtXu3bulffv20qxZM50HdwV9+/aV+/fv2y6XL1+2+pCIiCgWYHYEwRZyfTHTMnny5BgVJ0XQhoVk0KVLFxY6dVJxxYVhFAsrB6F48eKyd+9e+fHHH3U5LX6hUfgt7CgXVimmS5dOr+Pr86sJzVWMYfd5fmUjtrEqMmHChBInThy9RLSP+Rgvg1G5qHR9JyIi99C5c2ddrIXZDdTeiulqwjVr1uiHdqzKRyBHzsmlR7giKviG3CgEX1jlsWHDhnA1TlAGAjlegK+Ykgy7mnDdunUaTGFa0twn7GOY+5iPgYAPzxV2HxwDts19iIiITD///LNtROv333+3DRrExKRJk/Qr6nihPBE5KcNF9enTx9iyZYtx/vx54/Dhw7rt5eVl/Pnnn3p/u3btjCxZshgbN2409u3bZ5QuXVovpmfPnhkFCxY0qlatahw6dMhYs2aNkTp1aqNv3762fc6dO2ckSpTI6Nmzp65yHD9+vBEnThzd1zR37lwjfvz4xowZM4zjx48bbdq0MZInTx5u9WNkcJUiEZF7wypErKDHe/2QIUPs8pgXL17UFfd4zFOnTtnlMclwyPnbZQOuzz//3MiaNasRL148DZQqVapkC7YgKCjI6NChg5aKQNBUt25d49q1a+Ee48KFC0aNGjWMhAkTGqlSpTJ69OhhPH36NNw+mzZtMooWLarPkyNHDmP69OkvHMu4ceM0uMM+KBOxa9euKP88DLiIiNzXlStXjHTp0un7fL169YzQ0FC7PG7//v31Md977z27PB4ZDjt/e+Efq0fZSHTlI+bzkUAfnWalRETknJDq8u6778quXbu0PyLKBiVJkiTGj4vyR1mzZpVr167J/Pnz5aOPPrLL8ZJjzt9ulcNFRETkbDp16qTBFhZxLVmyxC7BFqCbCoIttKZDpxVybgy4iIiIHAQJ8kiUR5L8nDlz7JIkb5o6dap+/fzzz3URFzk3BlxEREQOsH37dh3dgqFDh0r16tXt9tgorm329W3RooXdHpcchwEXERGRAyrJ169fX/OsGjRoIH369LHr48+ePVvLEKEEUe7cue362OQYDLiIiIjsnCSPYAtFsFFJfvr06Xat/o61bjNnztTr6LBCroEBFxERkR2DIfRFRMs5Pz8/7fGLnr/2hJZ2KNyNbiXorEKugQEXERGRnaDq+y+//CLe3t6aJP/GG2/Y/TnM0S2sTAzbvo6cGwMuIiIiO/jrr7+0TyL4+/tLtWrV7P4cz54905ZA0LRpU7s/PjkOAy4iIqIYQvNoJMcjIMI0X8+ePR3yPFu2bJFbt25po+qqVas65DnIMRhwERERxcDDhw91eu/mzZtSuHBhnVK0Z5J8WAsWLNCv9erVEx8fH4c8BzkGAy4iIqIYJMmjDtbBgwclVapUsnTpUkmcOLFDngujZwsXLtTrbOPjehhwERERRdOQIUN01AmjTYsWLZJs2bI57LkwnXj79m2dTqxYsaLDnoccgwEXERFRNCDAGjBggF6fMGGClCtXzqHPZ04n1q1bV+LGjevQ5yL7Y8BFREQURX///bc0adJEr6N9T6tWrRz6fKgqj8bXwOlE18SAi4iIKAqQHI8k+UePHknlypVl9OjRDn/OAwcOaOV6FFF99913Hf58ZH8MuIiIiCLpyZMnWv7h4sWLkjNnTpk3b16sTO+tWrVKv1apUkXixYvn8Ocj+2PARUREFIW2PShwmjRpUlm2bJmkSJEiVp575cqV+rVmzZqx8nxkfwy4iIiIIuGnn36SqVOnao0ttO3Jly9frE1h7t27V6/XqFEjVp6T7I8BFxER0WusX79eunXrpteHDx8u77//fqw9959//qmja0WLFpUMGTLE2vOSfTHgIiIieoV//vlHGjZsKCEhIboy8csvv4zV59+8ebN+RYI+uS4GXERERC9x//59+fDDD+XevXtSqlQpmTJlisPa9ryq4ClUqFAhVp+X7IsBFxER0Uta6TRu3FhOnjwpGTNmlMWLF0uCBAli9RiuXr0qZ86c0SCvbNmysfrcZF8MuIiIiCLQo0cPWb16tSRMmFCLjqZPnz7Wj8Ec3XrzzTclefLksf78ZD8MuIiIiJ6DVj1jx47V67/++quUKFHCkuPYsWOHfi1fvrwlz0/2w4CLiIgojLVr10rnzp31+tChQ7XQqVX279+vX9966y3LjoHsgwEXERHR/3f8+HHbisSmTZtK3759LTsWHMOhQ4f0erFixSw7DrIPBlxEREQicuvWLalVq5b8999/Uq5cOUtWJIaFZP2goCDtn5g7d27LjoPsgwEXERF5vMePH0udOnXk/PnzkiNHDlm0aJHEjx/f0mM6ePCgLWHe25una1fH/0EiIvJoqOLeunVrTVBPliyZ9i1MlSqV1YelI1xQoEABqw+F7IABFxEReTQkxv/2228SJ04c+eOPPyRv3rziLBXuIVeuXFYfCtkBAy4iIvJY8+fPl/79++v18ePHO1X7nNOnT+tXBlzugQEXERF5pD179kizZs30OhpTt23bVpxpmhMV5oEBl3tgwEVERB7n0qVL2iMRyfI1a9aUkSNHijMJDAyUBw8e6PUsWbJYfThkBwy4iIjIoyCY+eCDD+TGjRtSuHBhmTNnjuZvORMcG6AkRKJEiaw+HLIDBlxERORRDalR2PTw4cOSNm1aWb58uSRJkkSczfXr1/UrjpHcAwMuIiLyCMiL6tixo6xZs0YbUiPYctbpOhRhhTRp0lh9KGQnDLiIiMgjjBgxwlY9HtOIztyf8NGjR7YpRXIPDLiIiMjtzZs3T/r06aPXf/jhB6ldu7Y4MyTzQ4IECaw+FLITBlxEROTWtm3bZiv/0LVrV+ncubM4OzPgsrq9ENkPAy4iInJbKB6K0azg4GCpW7eujBo1Slwl3wysbJ5N9uWyAZe/v7/Ov2N1CZIK0XT01KlTL3xCQIJkypQpdR68fv36tqW2YWuxoAYLlt3icXr27KmrWMLavHmzFCtWTD9p5MyZU2bMmPHC8aBCcbZs2XT4t1SpUlpQj4iIrE08f//99+Xu3btSsmRJW/seV2BOJSJQJPfgsgHXli1bNJjatWuXrFu3Tp4+fSpVq1aVhw8f2vZB5WCsQlmwYIHuf/XqValXr57t/pCQEA22njx5ok1LZ86cqcHUgAEDbPugczz2qVixohw6dEiHo1u1aiVr164NlxvQvXt3GThwoBw4cECKFCki1apVk5s3b8biK0JERKagoCAtbHr27FnJnj27LFu2zKXqWZkBF34OchOGm7h58ybGX40tW7bodkBAgOHj42MsWLDAts+JEyd0n507d+r2qlWrDG9vb+P69eu2fSZOnGgkTZrUCA4O1u1evXoZBQoUCPdcjRo1MqpVq2bbLlmypNGxY0fbdkhIiJEhQwbD398/0sd///59PTZ8JSKi6MN7cP369fU91c/PT9/7Xc3ChQv1+EuXLm31oZCdzt8uO8L1vPv37+vXFClS6Nf9+/frqFfYRqToAI+aKzt37tRtfC1UqFC4wnIYmfrvv//k2LFjtn2eb2aKfczHwOgYnivsPt7e3rpt7hMRDBPjecJeiIgo5nr37i0LFy6UePHiyZIlS/S939WY56Xn02DIdblFwBUaGqpTfWXKlJGCBQvaqvTijy158uQv/BKbFXzx9fkqvub26/ZBgISh3tu3b+vUZET7mI/xshy0ZMmS2S6ZM2eO0WtAREQiEyZMsCXGT58+XcqXLy+uKEOGDPoVqTBmAr0VcB7r1KmT5MiRQ/OYca5CW6QNGzZYdkyuyi0CLuRyHT16VObOnSuuom/fvjoqZ14uX75s9SEREbm0FStWaHAAQ4cOlU8++URcVfr06W2Lv+7cuWPJMVy4cEGKFy8uGzdu1ObeR44c0Sr9yGnGeZeiJq64uC+++EL/yLZu3SqZMmWy3Z4uXTqd7gsICAg3yoXhWdxn7vP8akJz+DbsPs8P6WI7adKk2hoCK15wiWgf8zEigk8KrK9CRGQfeC9v1KiRznhgYRM+1LoyJM1nzZpVLl68KCdOnJBy5crF+jF06NBBy1LgtU2cOLHt9gIFCsjnn38e68fj6lx2hAtDrAi2Fi9erNE3VqGEhajcx8cn3LAnykagDETp0qV1G18RsYddTYgVjwim8ufPb9vn+aFT7GM+BqYt8Vxh98EfPLbNfYiIyLG1trCaHO1wqlevrtOK7lC/ykyRwXkqtqGUBkazMJIVNtgyPZ+uQ24ccOGXADVVfv/9d63FhXlmXMwltMiLatmypZZr2LRpkya2t2jRQoOgt99+W/dBGQkEVk2aNJG///5bSz3069dPH9scfWrXrp2cO3dOevXqJSdPntQ/5Pnz52vJCROe4+eff9ayEvgk0r59ey1PgecjIiLHwfs+gizk05YoUULLAOHDtjswAy6UJIptZ86c0YENV1xw4LQMF4VDj+gyffp02z5BQUFGhw4ddFlwokSJjLp16xrXrl0L9zgXLlwwatSoYSRMmNBIlSqV0aNHD+Pp06fh9tm0aZNRtGhRI168eEaOHDnCPYdp3LhxRpYsWXQflInYtWtXlH4eloUgIoqa//77zyhWrJi+d77xxhvGjRs3DHeydOlS/dny5MkT68+Ncxiee9GiRbH+3K4msudvL/xjddBHoqseMSqHBHpMaRIR0cshRxer5f78809JnTq1Fq9GJxB3cu/ePe2UgtM0ViuaifSxNaWYKlUqXXzg6vlwznL+dtkpRSIi8kwIQJAYj2AL1eNXrlzpdsEW+Pn5aecSwM/qaCGhIbL3+l5ZdW6VnH1yVtNu0LYubAcXExakkYetUiQiIs+CEZdZs2bpCvE//vhD++q6KzTeRg4Xfs5mzZo57HnWX1wvw/YMkxuP/m/FfdJaSSXoQJD2oRw8eLAULlxYew1j4djEiRM1Z5kij1OKToJTikRErzdu3Djp3LmzrbBp8+bNxZ2h6wmS57EiHuWGHLE6EMFW983dxdBU6P/jJV7yNOCp5D6QW/7e8rdcu3ZNp2+xMh8Lx9599127H4s7n785wkVERC4BKxC7dOmi14cMGeL2wZZZ8woBF4p7z5492+4FRzGNiJGt54MtwG0+yX3kUa1Hcnb6WYnjHceuz+1pmMNFREROb8uWLfLZZ59p/hYKcn711VfiKdq2batff/rpJ7u3+Tlw80C4acSIgq7rj67rfhQzDLiIiMipYXQHuUxYmVi3bl0ZO3asWxQ2jaymTZuKr6+v1oJEvUh7uvXoll33o5djwEVERE4L3UFQ2BT5MWXKlNFpNSTLexLkBWFVJgwcONCuo1ypE6W26370cgy4iIjIKd26dUtLE1y5ckXy5csny5Yt0x62nqhPnz5aAgN9DZcvX263xy2WppikTZRWE+QjgtvTJUqn+1HMMOAiIiKnExgYKO+//772wM2cObNOpaVIkUI8Vdq0aW2rM7/88kt5/PixXR4XifB9SvbR688HXeZ275K9mTBvBwy4iIjIqQQHB2uu1r59+7TSOop+IujydBjlQrX5f/75R4YPH263x62ctbKMfne0pEmUJtztGPnC7bifYo51uJwE63AREYmEhIRIo0aNZOHChZI4cWLZtGmTWxc2jar58+fr64O6XPv377c1uLZXiQisRkSCPHK2MI3IkS37nb8ZcDkJBlxE5OlwOmrXrp1MmTJFAwq07KlcmaMrz79G6CGJ1wY1uvbu3euxeW3Ogr0UiYjIpfTv31+DLZR8wGpEBlsvwmszbdo0zelCFfquXbtafUgUSQy4iIjIcj/88IMMHTpUr0+aNEkaNGhg9SE5rTRp0mgvSQRfCFAnTJhg9SFRJDDgIiIiSyF4QG8+QNDVpk0bqw/J6VWpUsUWoGL14po1a6w+JHoNBlxERGQZ5CK1aNFCr2N6rG/fvlYfkkutWmzWrJkuNMCI4I4dO6w+JHoFBlxERGSJbdu2aaCAgAF9Er///nuPatkTU+aUInLdHj58KDVq1NDCqOScGHAREVGsO3z4sNSqVUsLeNasWVMTwb29eUqKKqzmXLp0qVSoUEFXy1WrVk22b99u9WFRBPjbTUREser06dPasgfL6MuWLau1pXx8fKw+LJeFlj8rVqzQ1zIgIEBHvJYsWWL1YdFzGHAREVGsNqNGQHDjxg0pWrSo9kdEwEAx4+vrq+2PzFHD+vXry08//WTXRtcUMwy4iIgoVly/fl0qVaokly9fljx58miA4OfnZ/VhuQ0ErosXL5ZWrVpJaGiodOrUST7//HMJCgqy+tCIARcREcWGu3fvaimDM2fOSLZs2WT9+vVaT4rsK27cuJpIj16LyImbMWOGTjWeP3/e6kPzeAy4iIjIoQIDA6V69epy9OhRbb6MYCtTpkxWH5Zbr17s1auXNv1OlSqVHDhwQIoUKSIzZ87kFKOFGHAREZHDYDoLvf/Q8y9lypSybt06eeONN6w+LI+A6Vs0uH7nnXc06G3evLnmdt26dcvqQ/NIDLiIiMghnjx5oif4LVu2aFNf5Gyh4TLFnixZssjWrVvF399fV4Iixyt//vzy66+/crQrljHgIiIiu3v27Jl8+umnsnr1akmYMKFWlC9evLjVh+WR4sSJo1XpURS1YMGCcvv2ba1QX7FiRTlx4oTVh+cxGHAREZFdYYVc69at5Y8//tDCnKgJhcRtshbKcGCKcdiwYRoEY+QRuV1ffvmlLmogx2LARUREdoNpKjSixuo4jKzMnTtXi5ySc0AA3Lt3bzl+/Ljm1j19+lRbKiGvbtSoUVrDixyDARcREdlN//79ZezYsXodQVfdunWtPiSKAEpzoOjsqlWrpFChQlqhvmfPnlofbfr06RqIkX15GVHImuvevXukH3j06NHRPSaPhB5YyZIl01YXSC4lInI1Q4YM0YALJkyYIO3bt7f6kCgS0Dx81qxZ0q9fP7ly5YotIEPeF1Y2xo8f3+pDdIvzd5QCLiTYRbYGyMaNGyP7sMSAi4hc3IgRI3SqCjA11aNHD6sPiaJRwmP8+PH6/4fWS5AxY0at6YWK9WgfRLEUcJHjMOAiIlf1ww8/aN4WDB06VL766iurD4liGHj9/PPPGkSbI144P6Fl0BdffKGjXxT18zdzuIiIKNowdWgGWwMHDmSw5QawgrFz585y9uxZmTRpkuTKlUuDCTO5vl69errCkeM1UROjES4k2f3yyy+2Oh4optayZUuN9ChqOMJFRK5m6tSpWv4BkO/z3XffaUoJuV+ZD9RT+/HHH7VTgAkJ9jjnN23aVNKmTSue6j9HTynu27dPqlWrppFwyZIl9Ta0bsBQJPo3FStWLPpH74EYcBGRK0FfvhYtWugoBxZUIe+HwZb7QzkJBF6//fabPHr0yNYwGyUmMOWIuADlQDzJf44OuMqVKyc5c+bUeV682GZlYbzg586d01YCFHkMuIjIVcyZM0c+++wzHflATg/KQDDY8rxz1rx583SWa/fu3bbb0Zy8UaNG0rhxY3nrrbc84vfiP0cHXBjZOnjwoOTNm/eF6LdEiRK2yJcihwEXEbkCVI//+OOPtZRAmzZtNMfHE06q9HJHjx7VwAulJe7cuWO7Hfle+F1B8FXAjXtoOjxpHg966dKlF26/fPmyJEmSJLoPS0RETmrp0qV68kSwhfpMEydOZLBF2p9xzJgxcvXqVS2mit+RRIkSadI9Vq3i/kKFCumiCgzUeGqyfbRHuLCCAV3HMW//zjvv6G3bt2/XSrXoDo9lwhR5HOEiImeGiuR16tTRCuRoSo0cLk/L1aHIe/jwoSxfvlx+//13WbNmTbjK9VmyZJHatWvr7xPSk3x8fMSVOXxK8cmTJxpcYTgZuVt4GPRoQmVhNMZkZdqoYcBFRM4KC6E+/PBDCQ4Olo8++khPombuLtHroDH2ihUrtIk5gi8srjMlT55catasKTVq1NCem6lTpxa3PX8bMfTw4UPj8OHDesH12LRlyxajVq1aRvr06RE0GosXLw53f2hoqNG/f38jXbp0RoIECYxKlSoZp0+fDrfPnTt3jE8++cRIkiSJkSxZMuPzzz83AgMDw+3z999/G2XLljXix49vZMqUyRg+fPgLxzJ//nwjT548uk/BggWNlStXRulnuX//vv4M+EpE5CzWrFmj72t4f6pTp47x5MkTqw+JXNjDhw+NpUuX6rk2VapU+ntlXry8vIzixYsbX331lbF161aX+V2L7Pk7RoVP0VUcyXIXL16U8+fPy/r163X+FpfYGrIsUqSItiKICKrkYvUMRuGwiiJx4sS6ZDVsN3QMjR87dkxriyACx+pKJIKGjVwRdWfNmlX2798vI0eOlG+++UamTJli22fHjh06Z416JJifxjApLnhtiIhcFUYjMPWDkS28p2FVmqtP/5C1EiVKpKOlSLK/fv26nnPROgjncsyU4TyLem7ly5eXVKlSafNz5AqePHnS9XO/ohvRrV69WqNTRKTPX7y9vY3Y9vwIF0a3MLI1cuRI220BAQH6SW3OnDm6ffz4cf2+vXv3hvu58DNcuXJFtydMmGD4+fkZwcHBtn169+6to1mmhg0bGjVr1gx3PKVKlTLatm0b6ePnCBcROZNVq1YZ8eLF0/elunXrhnsPJHKEq1evGjNmzDAaN25spEyZMtzoFy5p06Y1GjVqpOdlnL9xnveIEa5OnTpJw4YN5dq1a1qLJewFK1ishhE3RM+VK1e23YY51lKlSsnOnTt1G18xf4wyFibs7+3tbasrgn0QaSM/zYRRslOnTsm9e/ds+4R9HnMf83kigk+MGD0LeyEicqYEeeTqYoQBI1th3wOJHCF9+vTSrFkzzRFE8+w9e/bIt99+KxUrVtS8cNyG38UOHTpoZ5t06dJpzS+MgB05csQpYo9XiXbWI35wVBd21nL+CLbg+ePDtnkfvqZJkybc/UgETZEiRbh9smfP/sJjmPf5+fnp11c9T0T8/f1l0KBBMfoZiYjsbeXKldorD8EWVpyjyCmnESm2xYkTRwun4tKvXz9NBUIAtnnzZr0glefmzZsyf/58vQBKUmFQpXTp0lo9Addxjnb5gKtBgwb6Q6OwGUVd3759NWA1YYQrc+bMlh4TEXk25LEi2MISfrzHY6SBwRY5gwQJEuhsEy4DBgwIF4ChkTZmpQIDAzWXHBdTvnz5NPhC4IYSFCjWjlkslwq4fvrpJ10e/Ndff2lBs+f/KFGny0oYajRH4jBMacJ20aJFbfsgQg4LJS6whNX8fnzF94Rlbr9uH/P+iGB4lKUziMhZoGYSRrQQbOG9ffbs2Qy2yCUCMPPcjYVqSOUxL2fOnJETJ07oBUn6MGPGDJ22dKmAC8PMqM2CHxoRZthqw7hudcCFaUAEPBs2bLAFWBhFQhSMWmGAYceAgABdFVG8eHG9bePGjZqHhqFIc5+vv/5a34TMNx+saESXdHOoEvvgebp27Wp7fuyD24mInB1WlmNEi8EWuaq4cePquR4X5HXhdxgVCjCyhUEXfKA4ffq07dxuiehm5WO1wNChQ42QkBDDKqiXdfDgQb3gRxk9erRev3jxot4/bNgwI3ny5FrzA3XCateubWTPnt0ICgqyPUb16tWNN99809i9e7exbds2I1euXLpCIuzKRvysTZo0MY4ePWrMnTvXSJQokTF58mTbPtu3bzfixo1rjBo1yjhx4oQxcOBAw8fHxzhy5EikfxauUiQiKyxZskTfr/D+gxVgT58+tfqQiKIMscjGjRu1rqZZNw6XQoUK2e7HSltHrGyM7Pk72gEXSiWcOXPGsNKmTZteWDaKS7NmzcIVPkXAhP8AFD49derUC4VPEWD5+voaSZMmNVq0aPHKwqcZM2bUQC6iwqe5c+fWZdQFChRg4VMicnoopYMPi3jv+fjjjxlskcsJ+f+DPmPHjg0XBxQuXNgYN26ccffuXYcfQ2TP39Fu7dOtWzctwf/VV1/Zf9jNA7G1DxHFJqzsQuFn5L6gcPOvv/7Kdj3kMo4cOaKrF1GuZMGCBVqiCk2yMSXeqlUrTROKrcbqkT1/R/uvC/UuUMl97dq1Urhw4Rfm+0ePHh3dhyYiIgdCcNWiRQvNV/3ss89k+vTpDLbI6Z09e1YOHz6steFQNgK5h/i9vXPnjuZpIehy5npxcWMSXb755pt6/fkWNrEVVRIRUdSgLVnbtm31OkYCJk+ebNkyeaLXQfmHRYsW6SpDLGrz9fXVwAqFT3/44QdtvZcyZUrd15mDrRgFXJs2bbLvkRARkUOht2yXLl30+hdffCE//vgjgy1ySvfu3dO+xbNmzbJ1dcFgTpkyZeTWrVsaeJm/y64iyn9pKDiGMgpEROQ6hg8fbjtB9ezZU4MvBlvkTAIDA7XkFFLLEydOrIV3EWyhKPjAgQO1ZR8aqj/f/cVVRHmE699//5UaNWro0N0HH3ygXb8rVark9EN5RESeCCevwYMH62iB+aEZ15n6Qc7y++nl5aWtpNC5BqNXCKjefvttzQVH+z30KkbOlquL8sebadOmaY9ARKHoW4Rin6lSpdIKxUjERJV2IiJyjpMZ2oiZwdZ3332nPVwZbJHVbt++LWPGjNFONf/8848O2rz//vtaVByr/aBJkyZSrVo1twi2INplIcJC2XxUcV26dKlON5YsWVJHvrDUOGPGjPY5UjfHshBEZE94a8cHYkwdAk5uYbthEMW20NBQ7XM4depUWbJkiXY2AHwowIeBBw8e6FSiq30giOz52y4BV1joTYjgC8s10Sjyyy+/tOfDuy0GXERkzxMbWphhRSJMmDDB1tKMyCp169bVQMtUokQJXSn78ccf6/nPVVkWcFH0MOAiIntAIdOWLVtqigeS4rGcvnnz5lYfFnkg9BTGyCoK7H766adagqRPnz5a+w2/o2afY1fnsMKn9erVe+0+KESGxtFVqlTRxHoiInK84OBgTeVYvHix5r389ttvOnpAFFtOnTqlI6z58uWT3bt3y+rVq+Xhw4cacDVt2lQvCRMmFE8U5YArMsN+eLGRBId5WkwpYoUMERE5DvJf8IEYowpIQJ43b57UqVPH6sMiD/Do0SP5448/9Jz/119/SYMGDbTdDkZWEWx9/vnnup+nBlqxMqW4YsUK6dChg1y6dMlRT+E2OKVIRNGFWkVY4bVr1y5NOkaeDJbSEzkSBlYwZTh79mw9hwGmsRHoI+DylDpv/zm6l2JklC1bVpPiiIjIMVCmB0vn0WPOz89PVq1apTWMiBwhICBATp8+rdUILl++LBMnTtTbUTsLeVkY1WJ1gogxad5JcISLiKLq4sWLOpJ15swZzZv9888/ta4RkSNgBLVixYpae/PChQtavgHdCzCihds9ZUTLKUe4iIjIMU6ePKkLk9D9I1u2bJq7lTNnTqsPi9xs9BSrXffs2aNThFhVmChRIkmePLlcuXJFsmTJIuPGjbP6MF0GAy4iIhdz4MABnUZEtW6sBkOwxWkcsoeQkBBZu3atJsCjpibKjJi/c8WLF5dDhw5JpkyZXK44qUsGXOjDVbt2bX3hiYgodmEVWK1atXQaA+/DaOaLKR6imMKKQgTwyM0ylS5dWnOz0HIH0Eiaosc7us2rEeGicjFqbKDpJBERORbeb6tWrarBVoUKFWTjxo0MtijakMKN8iFY4Yo+yFjhmjdvXkmZMqV069ZNjh49Kjt27NCAy9fX1+rD9cykedTZ2r59u61/4rVr1zSXACNf+OSVIkUKxxytG2PSPBG9yty5c7WZL6Z4atasqTk1nl7XiKLn2LFj8sYbb0j8+PGlWLFiOk2InpudOnXS0a00adLofWTf83e0lhRgJQL6JI4YMUKryqKabKlSpbRsf4YMGaR8+fIyatQoTaojIqKYwckQFeQRbJmV5BlsUVQL46LNE6YICxYsqL9DyMNCcfL+/fvLhx9+aJsyZLDlxEnzmPPFpVevXnLr1i1tXI0LsHk1EVH0YALi66+/Fn9/f93GCMQPP/zgscvvKer27dungyEYIUXQZbbfQy0tQMsdih2sw+UkOKVIRGFhNKtt27Yybdo03f7uu++08S9Xh9Hr3LlzR54+faq12dDtxSxOmitXLmnVqpX2M8R9ZB+sw0VE5MK96dB0GnmyGM2aMmWKJi4TRWb6uWfPnhqs43rr1q11ZAuBFlKBGLBbhwEXEZETwWox5NNgYVKCBAl0FZmZX0P0PORKz5gxQ1cWtmvXTlcZonIAEuMxgfXmm29q8VKyHqcUnQSnFIkIZXeqV6+uJ0tU88YIF3rSEoWF6UL0zERxUnxF5YCsWbPKuXPn9P6///5bAy2KHZxSJCJyISdOnNDq8ViWj9XeqPaN1WREYW3btk0++ugjbbtjwlQhpgwReCEhnsGWc4p2wLV3715N4MSqRPTvQo8l84L+SkREFPmmwKithelEVPRGsIURC6KgoCBZtGiRFiHFalVMGSIpHrWymjVrFq4KPLnplCL+0xFYIbfg/PnzWjgNl3v37omfn5/+QlDkcUqRyDNhSqhBgwZ6Yi1ZsqSsXLmS1eNJp5fR0eXMmTO6uhDJ7hcuXNDzLmpfYhQrXrx4Vh8mSSxMKWLYG28MqFYb1sWLFzXwIiKiV0MODhKd0TAYuVt//PGHtlchz4QT9pw5c7RAKfL4rl69qjNIKOOAc22iRIl0PxQaJ9cT7YCrTJkyGoE/H3BhGJxD4UREL4eJhQEDBsiQIUN0GydUBF8+Pj5WHxpZ8LuAFan4/58/f76OdAJ+FzDVjEB85syZVh8mxfaUYr169aRw4cJSpEgR/SWZMGGC9vPCFCLFDKcUiTwDluwjwXnWrFm6jcDrm2++YX0kD4P8Z0wdY3QTgxQYzYL8+fPr78dnn30mqVOntvowyaopRYxmIRJHoHX79m29LXfu3Nq0+u2339Y55UKFCnFemYgoAnhDrl+/vmzYsEHixImjLVdY0NTzfP755xpwr1+/XipUqCBffPGF5moh0MK5lMG3e4pSwDVy5MhwxdbMRHlchg8frjVAsCQVKyYOHz7siOMlInJJSMF4//335ciRI+Lr66uzA5guIveH3Obp06dLo0aNtO8wpgvRugmBNwKuvn37Wn2I5Mw5XBkzZtQLljKb0D4AwReKrhER0f/gAyiCLXxQRQ87rExkrST3nzpetmyZ5mb9+eefmoaDqafRo0dLr169dFQLM0LkOexa+BSf2lAVmZWRiYj+B9NGmEbEyRb5OQi2uLDIvU2aNEn69+9vS72BSpUq6WgWPL/YjDwDK80TETkIVpchLwfTRzjZLl68mIuM3NDDhw91ihhJ7pj1QQ9MBFvoGNCiRQvN2cqRI4fVh0kWY8BFRGRnmD5CyQesQITGjRtrDk/8+PGtPjSy4/8xAi3M7EycOFF69uyp9bEQcKH1DppJ16hRQ/OaicCbLwMRkf0EBwfrqIYZbKEF2m+//cZgy02gm8pPP/2kOXiffPKJ3takSRNNhq9Tp46WeUDx2g8++IDBFoXD3wYiIjtBSzPUK9y6dauWfcCJGZXkyfVHs7Zs2aIJ8OgGgKAaUMoBuXlp06bVyvAs50CvwoCLiMgOTp8+rdNJOAmj+CFyeqpWrWr1YVEMPH78WPOx0LuwYsWKtttR/Lt169Y6wmUWumSwRa/DKUU7Gj9+vGTLlk3/QDGXv2fPHqsPiYhiwebNm7VgJYItvAfs2LGDwZYLu3Hjhk4Poo/h06dP9f0cjcXbtm0re/fulYMHD0rHjh25AIKihAGXncybN0+6d+8uAwcOlAMHDugnoGrVqsnNmzetPjQiciAkw1epUkVzexB0YTSkQIECVh8WRREKd48aNUqnD1OkSCE7d+7Uumnbtm3T0Sv0NUS5hxIlSnA0i6KFAZedoJgdhpiRLItaO/jDRGf3adOmWX1oROQAoaGhWiEcS/5R9gFVxDdu3Chp0qSx+tAoClOGc+bM0RpZqI2FlYZoX4dK8HjvPnHihG0qkUEWxRRzuOxUUXj//v3h2jN4e3tL5cqV9VNSRJB0aSZeAhIvicg1PHr0SJo2bSoLFy7UbRS5RANq/N2T88MoVo8ePWTGjBk6MmkGVJiVMHsBh+2iQmQPfHewAxS4w1JgrFQJC9vXr1+P8Hv8/f21u7h5yZw5cywdLRHFxLVr1+Tdd9/VYAsn519//VUGDx7MYMvJBQYGys8//6xpHgiu/vnnHw22smTJosHyhQsXZPXq1ZqrReQIHOGyCEbDkPMVdoSLQReRc0OfWNRXunz5sha2XLJkCVuZOflIFqZ+UaKjdu3asmnTJrl//758+eWX0q9fP+1niJkI3E/kaPxIZgepUqXSP1isbAkL22hUGxEUQcRy4rAXInJeixYtkjJlymiwlSdPHk2OZ7DlvLMOY8aMkYIFC8qsWbP0tk8//VTy5s1rm4nAykNMITLYotjCgMsOMK1QvHhx2bBhg+02fKrCdunSpS09NiKKGZR4wHQhGlCjlQtWJCI3kw2InQvec9etW6eLF9DDEDMIx48ftwVczZo1021UhSeyAqcU7QR/3PiDxpJh5AD88MMP+uaMVYtE5JrwN/zZZ5/p1BS0bNlSVyCzZYvzwP8NcrIGDRqkuXQmvBejcfjHH3+s2/w/I6vxN9BO8Knq1q1b2j8NifJFixaVNWvWvJBIT0Su4dKlS5qvdf78eT1Zo3dejhw5eOJ2EihAimR3JL2jeXTDhg1l7NixGiAjMMZ7MJEz8TLMj25kKSTNY7UiEjqZz0Vk/TRi3bp1dUUbAiwkWwcEBEjXrl11dRtrMlnXPgkBMHKv0NsQq0WTJEmi/0/o8IFSO2wSTs56/mYOFxHRc5XjcSLHSRzFi7/66itNjq9evbq+oeJET7Fb8wx5WBUqVNDFCmah2fLly2t5HdRARLAFDLbImTHgIiIS0ZM4cjFxQkf/PPRCRFFj9MwDjHQhdeCXX36x+lA9AlZ547VHAjyKzG7dulUXLxQrVkzu3Lmjo4x9+vSRXLlyWX2oRJHCKUUnwSlFIuugACaSq//880/dRm7QgwcPtLde2LIBeLvEKAqKn+LvlewL07aYvsV0Lq4j2AoKCpLs2bNrAjwWJmXMmNHqwySK1vmb2Z9E5NFQKqBOnTryz5mzkixXCenY4yt579135KMKReT777/Xka6wsC/677Vr186yY3ZHCLAyZcqkK0ORJ5czZ07tUYsRLPQzZCV/cnUMuIjIo4uZYtQkJEMhydJxgHgl9pPZ50V+XjtObt++K1lL15SCBfOE+x7U48K0IgOumE8Zzpw5U/OzMKqFAtLlypWTf//9V+9DwMXXmNwJPzIQkcdB71MkwyN4QrCVps5XGmyZHhz+UxJkLSJfLj0ja45eC/e9+J59+/bJ4cOHLThy18+TW7lypdSrV09Hs3r37i1Hjx6V3377Te+fN2+evq6o6E/kbpjD5SSYw0UUO+7evSuffPKJrF27VsTLW/L2nC9BXv9b5fY8FH9IlyyBbOv9nsTxZimImMII1rZt22zb6MSB3CzU0PL19bX02Iiii2UhiIgiaD6NCuQIthImTCjfTvr9pcEW4NPotfuPZc/5u7F6nO5i2bJl2grJXIyAfDg0/e7WrZuObKHeGVaFMtgiT8AcLiLyCEh0RwVyc9Xb4sWL5YKRSuTcodd+783Ax7FyjO4AgVTixIn1NV6/fr1ekidPrsEWCsf26tWL9bLII3GEi4jcPm+oR48eOo2IYAsnfuRgFSlSRNIkefnoVliR3c9ToYQGFhJgirBQoUJaTgPatGkj/fv3lxEjRug2qsIz2CJPxREuInJb6G+K+lobN27UbRTKHDJkiK22VsnsKSR9sgRy/f5jnT58WQ4X9qOIR7N+/PFHmTt3rgZdZoFYVIeHggUL6oWIOMJFRG4Ko1jI10KwhSmuBQsWaCuYsIVMkQg/8IP8ev35lHhzG/czYf7/oMo7cuHMgGvq1KkabKFe1vDhw+Xy5cvaHomIwmPARURuBQuvJ06cqKUFLl26pIHA7t27pUGDBhHuX71gepn4WTEdyQoL27gd99P/rF69Wqu/o3YZXmcUgW3durX2lzx16pTmZ6VLl87qwyRySpxSJCK3gSrlbdu2ldmzZ+s2AgKMtiBp+1UQVFXJn05XIyJBHjlbmEb09JGtK1euyIwZM+T8+fM6klWqVCntYYiq76gM7+fnJ1OmTLH6MIlcAutwOQnW4SKKmZMnT+oo1rFjx3TacNiwYZosjwCBIg+Nu1GcFAEWRrRCQ0P19nPnzunKw4sXL0rWrFmtPkwip8FeikTkMebPn68lH5BLhCktVCwvX7681Yflcq5fvy5FixbV1jphi5WiOGnatGl1m8EWUfQw4CIil/XkyRPp2bOnjB07VrffffddrbfFPKLIl8zACkMErFhUgKAKrx0mPpo3b65FSfPkCd9Lkoiih1OKToJTikRRg9VwaAmza9cu3e7bt68MHjxYyxLQq6FfIco14O0/W7Zs2jAagVejRo00Xwt9Dn18fKw+TCKXwClFInJbaBWDQqYoUYCE+F9//VU++OADqw/LqeFkgNE/5Gbt379fK8BXqlRJa5Ohv2TZsmV1P+RpEZH9MeAiIpcREhIi3377rY5kYXSmWLFiOhWWI0cOqw/NaaFfIVYSYtoQlfYBo1dYXICAq2PHjlYfIpFHYMBFRC7h6tWr8tlnn8mmTZtsbWNQ5TxBArbded7Nmzd1ajVFihQyevRoWbhwod6eP39+TYDH65g6dWqrD5PIo7DwKRE5vbVr1+rqOQRbqBo/a9YsmTx5MoOtCGD0L2PGjDJ+/Hjdbt++vSa/Y6QLleG7devGYIvIAhzhIiKnrgk1YMAArakFaDiNkg9cOfd/UBcLxV3z5cunSe+YXsXqQyTGA6YNcSEiazHgIiKnhLY8aDy9c+dO3e7QoYN8//33HNX6/+Uwli1bpgnwWECAfDb0jUTAVb9+fSlcuLBeiMh5MOAiIqezdOlSadGihdy7d0+XWf/yyy8v7YXoaVatWqW9DG/fvm277b333tPcLAReCRMmZLBF5IQYcBGR0wgODpbevXtrMjy89dZbWh/Kk1choj8kVmKiCjxKOOTOnVuDrfTp02tQivysN954w+rDJKLXYOFTJ8HCp+Tpzp49q1NiqBEF3bt3F39/f4kXL554GrwtX7t2TTJkyKCFXUuXLq0jV1ipibpj27Ztk7fffptFXomcAAufEpHL+P3333U1Hd64UMpg5syZUqtWLfE0KEA6e/Zszc1CwIUK8KVKldKirgi6zEbcZpFSInIdDLiIyDIIsFB487fffrMFEgi+MmfOLJ4iNDRUtmzZokEW6mVhWhXix48vhw4dkpIlS2qCPBG5NgZcRGQJrD789NNPtXeft7e3ln/4+uuvPWaaDHlYqVKlkkePHsmHH34oDx480NuR8N66dWt9bfz8/Kw+TCKyE894ZyMip2rP891338mgQYP0OponYxrtnXfeEU8Z0froo490JSZqZaH6O6rmIzkeKw2LFy9umzokIvfBgIuIYrVIJ9rKIOkbMIqDiuhIOHX3BQHTpk2TL774QlcXItDEZd26dRpwob4YEbk3BlxEFCtQ3qFdu3a6kidJkiQyYcIEDb7c1ePHj2Xx4sWam7Vx40a9DT83SjsMGTJEV2CiOjwReQYGXETkUIGBgTqy8+uvv+o2VtshSd6da2uNGDFC2xGhcCtgirBq1apSrFgx3S5YsKDFR0hEsY0BFxE5zO7du3XaEFNqSIzv16+f9O/f3+0S4xFUYgQvb968Uq5cOb0NwRZWW6IwKQqUZs2a1erDJCILude7HhE5TdPpb7/9VpPjkauEYAOjWu5UPwrFSbHCMHHixDpFiFEtrDZEwNW8eXNdbVilShWJEyeO1YdKRE7A2+oDICL3cvz4ca2CjoALwdYnn3yi9aTcJdhCOYcxY8botGDnzp31NoxgYXSrYsWKup0mTRqpXr06gy0isuEIFxHZrdzB2LFjNSkcxTtRMX7ixInSsGFDcYefbf369ZoAv2TJEh3Bg1u3bul1BFsINFnOgYhehgEXEcXYpUuXdBpt06ZNul2jRg0NTtAL0JUhcETF95UrV+p0oQm1slCc9OOPPxYfHx+9jcEWEb0KAy4iilEe06xZs6RTp07apidRokQyevRoLeTpygEIqt9jZSUCSRQnrVatmuTJk0dzslq2bClFixa1+hCJyMUw4CKiaMF0GupqLVq0yFbuAaUfcubMKa7o9OnTOm3YoUMHSZkypWzevFmT4o8cOaIJ8CdOnHDpIJKIrOWySfNDhw7VViD4RJ08efII98Gn05o1a+o+SGLt2bOnPHv2LNw+eFNFbRxMG+BEMWPGjBceB5Ww0X4kQYIEUqpUKdmzZ88LBQ7RgBdv0r6+vlK/fn25ceOGnX9iIuexYsUKKVSokAZbmFLDasStW7e6XLCFgApBYvny5XUEC3/HCLySJk0qM2fO1OsItoDBFhF5ZMD15MkT7UfWvn37CO/H6igEW9hvx44d+uaJYAoNcsNOG2AfrCzCKqquXbtqL7O1a9fa9pk3b550795dBg4cKAcOHJAiRYro9MLNmzdt+3Tr1k2WL18uCxYskC1btsjVq1elXr16Dn4FiGJfQECA1pX64IMP9ENFgQIF9ANI3759Xaq2FhLdMZKFNjvNmjWTv/76S+uE1apVS/O2oEGDBpIrVy6rD5WI3IXh4qZPn24kS5bshdtXrVpleHt7G9evX7fdNnHiRCNp0qRGcHCwbvfq1csoUKBAuO9r1KiRUa1aNdt2yZIljY4dO9q2Q0JCjAwZMhj+/v66HRAQYPj4+BgLFiyw7XPixAkDL+3OnTtfetyPHz827t+/b7tcvnxZvwfXiZzRypUr9Xcfv6deXl5Gjx49jKCgIMNV3Lt3z5gwYYLx4MED2982fpbs2bMbQ4YMMf7991+rD5GIXBDO25E5f7vsCNfr7Ny5U6c80qZNa7sNI1NI7D127Jhtn8qVK4f7PuyD2wGjY/v37w+3Dz4FY9vcB/fj03LYfbBEPEuWLLZ9IoI+amjYa15QkZrIGaFiOlYgYjQYo7cY9cGI0KhRo3Sa3dmT+lHSAVCQFKNaf/zxh+1vEDlbZ86cka+//loyZsxo8dESkTtz24Dr+vXr4YItMLdx36v2QVAWFBSkBQ4xNRnRPmEfI168eC/kkYXdJyKYgkETX/Ny+fLlGP7ERPaHcggo8IkpeeQwYXod0+9lypQRZ4bpTlR+R17WmjVr9LbGjRvrFCjyLOG9996TSpUq6YcoIiJHc6p3GhRMxJv6qy4nT54Ud4AkfSTmhr0QOdOoFnKbkNOEUa3cuXPLtm3b5Pvvv9dFKM4IH45WrVql+ZOZMmWS3r17yz///GNrmo1FM1hxiEUtRESxzamyXHv06KFTF6+SI0eOSD1WunTpXlhNaK4cxH3m1+dXE2IbwU/ChAm1LQcuEe0T9jEw9Yhk4rCjXGH3IXIlWADStm1buXbtmn7Iwd/l4MGD9W/CWacNcZxoszNhwgTb7WgvhEUwZqV7s0ApEZF4+ghX6tSpNf/pVRdM30UGagLh02zY1YTr1q3TYCp//vy2fTZs2BDu+7APbgc8FypKh90H+SDYNvfB/XgjD7vPqVOntCSFuQ+RK7h79640adJEK6oj2MJ03Pbt22XkyJFOGWxhRXDVqlXlm2++0W2sWkY7Iaw2xt8+cihRpDRJkiRWHyoRkeuuUrx48aJx8OBBY9CgQYavr69exyUwMFDvf/bsmVGwYEGjatWqxqFDh4w1a9YYqVOnNvr27Wt7jHPnzhmJEiUyevbsqSsLx48fb8SJE0f3Nc2dO9eIHz++MWPGDOP48eNGmzZtjOTJk4db/diuXTsjS5YsxsaNG419+/YZpUuX1osjVjkQOcLChQuNdOnS6e8gVvfib+LRo0eGszl69KixZcsWvT5//nw93kyZMunq4dDQUF39S0QUmyJ7/nbZgKtZs2b6Az5/2bRpk22fCxcuGDVq1DASJkxopEqVSpexP336NNzjYP+iRYsa8eLFM3LkyKFlJp43btw4DaiwD5aS79q1K9z9WBrfoUMHw8/PTwO4unXrGteuXYvSz8OAi6yAUgh16tSx/f3kyZPnleVMrIAPUVOnTjXefvttPUZ8kDKDK3zgwgcnIiKrRPb87YV/rB5lI9GVkSgPgRWLTKAnR8PU+M8//yy9evXS3z0ULcWiFZRHcJZSDxcvXtSOEnPmzJEHDx7obThOFF1FIry52pCIyBXO306VNE9Ejoccw9atW2stLShZsqRMnTpV69ZZ7c6dO7J79255//33dRvHhc+EqP2FBPimTZtyMQoRuSQGXEQeAqtpkQCPFYe4njhxYh1B+uKLL3Q1rjOMaKH8BFy5ckWyZs0qw4cP1/6lKFrKXoZE5MoYcBF5AIwaYYTo6NGjul2jRg2ZOHGiBjVWQVCF/qaLFy/W0TYcC4qsYroT96VKlUprZxERuQMGXERuDLlP/fr1k7Fjx+rUHIKYH3/8UauuWzFihDZYKE6KqUJ8NdvuIOj65JNPtNWOn59frB8XEZGjMeAiclPLli2TTp06aU04QI2t0aNHa9BlBQR8RYoUkRMnTthuw1QhRt7q1Kmj2wy2iMhdOVXhUyKyTy5U7dq19YJgK1u2bLJ27Vpd2Rfbwdb8+fOlYsWKcvDgQR1RQ+9CFDjGVCHadG3dulUT4Z21XRARkb0w4CJyE5iuQ8NmdFLA6JZZ6uHYsWNakT22/P3337bG7QsXLpTNmzfrFCIgYf/ff/+1NZYmIvIUDLiI3AAaSxcrVkwbNj969EjKly8vhw4dEn9//1gZPUIdmsmTJ8tbb70lRYsW1euAKc1BgwZp4GdOGUa2PRcRkTthDheRC7t9+7YGWdOmTdNtTBmOGjVKp+liIyl+//798tNPP+nUIQI9QG/Re/fu6fWyZcvqhYjI0zHgInJBWN03c+ZMzYVCsVBA8vmwYcMkZcqUDn1uNIRHQIUpQYysobQD5MuXT48ByfnI0yIiov/DgIvIxaCWVvv27TXYAVSIR02tMmXKOPy50WanWbNm8t5778maNWvks88+kyNHjkjLli3l7bffZnFSIqKXYMBF5CICAgLkm2++0Sm8kJAQzc1CflSXLl10Gs8RsMpx+vTpWs8LVepR9R3J+egZFhwcrKNpZkI8ERG9HAMuIheZPkTiOabzoG7duvLDDz9IlixZ7P58aPuDVY4IpP7880+tnxU/fnz56quvJEeOHHLmzBl544037P68RETujAEXkRPbt2+f9jpEax5A3hSqxjuqzANqY2GF461bt2y3YfoQuVnmakcGW0REUceAi8hJVx9iRAmjTBhh8vX1lYEDB0rnzp3tWlYB04LIy0I+1u+//y45c+bUx0+fPr20aNFCPv/8cwZYRER24GXg3ZwshzpGyZIl09yYpEmTWn04ZJFnz55pDav+/fvbSisgMX348OGSIUMGuzwH/uSPHz8uBQoUkIcPH+rj4vdvw4YNOpp1+vRpnTpE4VQiIrLP+ZvvqEROAqsOMX2ISu2AvoNIkLdXHSsEcLNnz9ZRMzzH4cOHdYUjSkvEiRNHAzDInTu3XZ6PiIj+DwMuIothJWDfvn11Ss+sxj5kyBBp27atBkIxZbbW+eOPP3QKEZAEj/6GCLj69esX4+cgIqJXY8BFZBGUWkBPQZRbePz4sdawat26tQwdOjTGTaavXbumQ9uJEyfW3C80iQYEWHiOTz/9VFKkSGGnn4SIiF6HvRSJLCrzgKm7b7/9VoOtChUqaJsc5G/FNNjq3r27ZM6cWacPAdOUbdq0kT179uhUIvobMtgiIopdHOEiiuU8ra5du2pwBUhOxwgX6mpFt0r7uXPntJciyjmgXETGjBm1MKr5HB999JFeiIjIOgy4iGLB+fPnpVevXppHBUmSJNGViCjzgHyqqMKo2JIlS+Tnn3+WjRs36m2HDh3SgAvlHGrUqCH58+e3+89BRETRw4CLyMHLhb/77jsZM2aMVnD39vbWHKrBgwdLmjRpovWYc+fOlY4dO8rdu3d1GyNjVapU0UALMF3IKUMiIufCgIvIQfW0MM2HUSyzHU/lypVl9OjRmrgeFYGBgTJv3jztYYim1VmzZtVgK1OmTFqYFBfcRkREzouFT50EC5+6B/w5LV++XHr37q1tcgDJ8d9//73UrFkz0nlaeBwEamnTppWlS5dKnTp1dETs8uXL2qh606ZNmmhvj7IRREQUfSx8ShTL0O8QRUT/+usv3U6ZMqWOcGFUKrLteNDSZ9asWVo3C6NkCNref/99Da5q1aqlt+GxUBGeiIhcBwMuohj6559/tO+hmRCfIEEC6datm45y4VNPZMpEoK0OgqzFixfr1CEkTJhQHxsjZCheSkRErosBF1E0YcoPdbQmTZqkI0+YLkTi+qBBgzS/KjKtdlBV/saNG7qqEKUcoHjx4tKqVStp3LhxpAI2IiJyfgy4iKIIDZ+x6hANpVEtHjDtN2zYsEglxKOkQ/369WX9+vVy8eJFSZ8+vVZ+R6mIli1byptvvhkLPwUREcUmBlxEkYSpvhkzZmirHLTOMUejULi0YsWKr/ze06dPy/Tp0+Xrr78WX19fHd1CmYh169ZJkyZNtPI8ERG5LwZcRJHIsZo/f74MGDBAc6oge/bsWl+rYcOGWlsrIo8ePZKFCxdqbpbZyzBXrlxaxuHHH3/U6ULkZxERkftjwEX0itIMK1eu1FGpw4cP622pU6fW7Xbt2r2yQjxWJ44bN06XCQOCMuRpvfHGG7r91ltvxdJPQUREzoABF1EEsCoQKw937typ2xiNQsmHLl266JTg8wICAmTOnDnyzjvvSJEiRSQoKEiDrWzZsmleVvPmzSOVSE9ERO6JhU+dBAufOoc9e/boCBYS2s3SDAiyEGw93y4HfzrBwcFaBgLThMjRwupC9DdE78SzZ89qvayXTTkSEZHnnL95JiASkaNHj0rdunWlVKlSGmyhmvsXX3yhQZO/v3+4YAtlHEaMGCF58+bVnoiAchAFChSQEiVK2HK80MqHwRYREQFHuJwER7iscebMGa2bNXv2bB2xQoDUtGlTXYmI6UATamStXbtWE+DRugd1t8wk+FOnTtn2i2zrHiIicg9s7UP0mkBryJAh8ttvv9kKjjZo0EBHrPLly2fbD6Ub0EoHZRuQi2V6++23dfoQqxQZZBER0etwhMtJcIQr9gKtoUOHar9CM9BCU2mMcqGmlunYsWPSvXt3rb21ceNG/X9BUVMULEXgVbBgQQt/CiIichYc4SIKA7lYGNF6PtDC1KFZogFB1t69e3VFIf5okMuFzyP//vuvrjC8cOECc7KIiChaePYgtw+0sIIwT548WiUewRba8OzevVtWrFih04fTpk3Tcg4YtWrTpo32SMycObPejhExs5wDgy0iIooulzyDYKQB0zpYCYZl+ygmiZEK5NuEhWKV5cqV02X7OIFiZdnzFixYoKvNsA+mjFatWhXufoxwoMI4+t3hubDyzKw2brp79672wsOoSPLkyfXYzB57ZI1z587p/wMCLZRrQKCFwqO7du3SYqYItBBc4f8V+6HeVpw4cXTUC8PD0KxZM8mRI4fVPwoREbkBlwy4Tp48qe1WJk+erNNAaCQ8adIkLVRpwkmzatWqkjVrVtm/f7/2u/vmm29kypQptn127NghjRs31hPuwYMHpU6dOnpBiQATgrSxY8fq42NUJHHixFKtWjVtQGxCsIXjQF88jJqgjQtO5hT7EAybgRZGqBBoVa9eXQMqJMgfOnRIb8P/I6YMERjnzJlTG09j6nDx4sW6TUREZFeGmxgxYoSRPXt22/aECRMMPz8/Izg42HZb7969jTx58ti2GzZsaNSsWTPc45QqVcpo27atXg8NDTXSpUtnjBw50nZ/QECAET9+fGPOnDm6ffz4cSw6MPbu3WvbZ/Xq1YaXl5dx5cqVlx7v48ePjfv379suly9f1sfBdYq6v//+22jUqJHh7e2tryMu1apVM7Zv367/j8+ePTMyZMigt+P/B5YuXWps3rxZ7yciIooOnLcjc/52yRGuiGB1QNjilBjRKF++vC7pN2FkCjWT7t27Z9sHU4RhYR+znQuqhV+/fj3cPliJgOKY5j74imlEs+AlmAUvMSL2MiimiccyL5jypKjDa/zhhx9qO5158+bpyGetWrVk2bJl+v/fpEkTOXDggE4XfvTRR7qfCd9XoUIFlnUgIiKHc4tVikhsRqPgUaNG2W5DoIQcr7DSpk1ru8/Pz0+/mreF3Qe3m/uF/b6X7ZMmTZpw98eNG1eDP3OfiPTt21fLDoSdAmXQFTnIq0OvQ5R32LBhg96GoAklG8qWLau3YWoYwRcgWR4lH4YPH64BOAMsIiKKbU41wtWnTx89Gb7qgvytsK5cuaI5Ohi9aN26tbiK+PHja5J92Au9PtBCwnuZMmW0RyECKwS3SG4/ceKEjmJ17dpVK8Ej2ELwhWALgZb5mjPYIiIi8fQRrh49emgNpFcJu2rs6tWrUrFiRV3SHzYZHtKlS6c978Iyt3Hfq/YJe795G1azhd2naNGitn1QRiAstH3BykXz+ylmkOS+aNEi+e677zTp3QyeqlSpInfu3NHpXCTJoxciipTidwilILD6lIiIyCkYLurff/81cuXKZXz88ceaEP08M2n+yZMnttv69u37QtJ8rVq1wn1f6dKlX0iaHzVqlO1+JMVFlDS/b98+2z5r1659bdJ8dJPuPMmjR4+MSZMm6f+zmQifMGFCo0mTJsa1a9eMcePG6W1FixbV/fF/HXaRBBERkaNF9vwtrhps5cyZ06hUqZJex8nXvIRdTZg2bVo9OR89etSYO3eukShRImPy5Mm2fbCCLW7cuBpQnThxwhg4cKDh4+NjHDlyxLbPsGHDjOTJk+uKtsOHDxu1a9fW1ZBBQUG2fapXr268+eabxu7du41t27ZpgNC4ceMo/UwMuP7PnTt3jCFDhhhp0qSxBVr4vzNXGVauXFn3u3v3rjFo0CDj4sWLVh8yERF5qPvuHHBNnz7ddiJ+/vJ8qYCyZcvqiFTGjBk1eHre/Pnzjdy5cxvx4sUzChQoYKxcuTLc/Rjl6t+/vwZveBwEeadOnXohQECA5evrayRNmtRo0aKFERgYGKWfiQGXYVy4cMHo0qWLkThxYtv/J67j/8bcRkCMkcmnT59afbhERERGZM/fbF7tJDy5eTXyslCYFmUdzD6HyJFr0KCB9OvXT7dRGb5Vq1Za5iF16tQWHzEREdH/sHk1OTXE+VhliEr+qNBvwipCX19f7QKAVkrBwcG6CrV06dJcYUhERC7LqcpCkPtDv0u02EFdLKwyNIMttFjau3evNorG6kKsQIXBgwfrKlQGW0RE5Mo4wkWx4vbt29r78qeffoqwIGyLFi20vAN6WqZMmdKSYyQiInIUBlzkUGjq/cMPP+ioVtiG3ybUUUNuFoqUAoMtIiJyRwy4yO5Q5X3NmjUyZswYWb9+ve12TCOiGvylS5d0RAvFSXPmzGnpsRIREcUGBlxkNw8fPpSZM2dqIvzFixfD3YdRLHQDwNQi+liiJQ8REZGn4FmPYgwjVqNHj9aAKigoSG9LkCCBdOjQQfLnz6+tkNBuB4nvLOlARESeiAEXxaisw7fffitbt24Ndx+mDbt06SLDhg2z7PiIiIicCQMuinKBt3Hjxsm0adPk3Llz4e7LmjWrdO3aVYuTMvmdiIjo/zDgokivNhw/frz88ssvWksLUKC0du3aut2zZ08t68B6WURERC9iwEUv9fTpU62dhbY7yNMKK3fu3LJnzx5tZ0BERESvxoCLXnDhwgUdsVq2bJltNAswmtWpUyetBp8nTx5Lj5GIiMiVMOAiW+0s1MxCovumTZvC3ZcjRw758ssvtbSDj4+PZcdIRETkqhhweTgkviOYQrAVGBhouz1evHhSs2ZN8ff352gWERFRDDHg8kAhISEyY8YMWb16tSxZskS3zSR41Mt677335MMPP9TyDkRERBRzDLg8bKVh79695c8//9SEeFP69OmlXLlyMmrUKMmcObOlx0hEROSOGHC5OYxeYZUhSjr8+++/4e4zpwwLFSpk2fERERF5AgZcbl4N/q233pKDBw/abkucOLHUr19fk+MxskVERESO5x0Lz0EWQRHSsmXLal9DjGLNmzdPHjx4oA2mGWwRERHFHi8DwyDkFC1zUET0/v37kjRpUrs97p07dyRhwoSSKFEiuz0mERERRe38zSlFN8eehkRERNbjlCIRERGRgzHgIiIiInIwBlxEREREDsaAi4iIiMjBGHARERERORgDLiIiIiIHY8BFRERE5GAMuIiIiIgcjAEXERERkYMx4CIiIiJyMAZcRERERA7GgIuIiIjIwRhwERERETlYXEc/AUWOYRj69b///rP6UIiIiCiSzPO2eR5/GQZcTiIwMFC/Zs6c2epDISIiomicx5MlS/bS+72M14VkFCtCQ0Pl6tWrkiRJEvHy8hJXjfIRMF6+fFmSJk1q9eF4DL7u1uDrbg2+7tbg6/5yCKMQbGXIkEG8vV+eqcURLieB/6RMmTKJO8AfI/8gYx9fd2vwdbcGX3dr8HWP2KtGtkxMmiciIiJyMAZcRERERA7GgIvsJn78+DJw4ED9SrGHr7s1+Lpbg6+7Nfi6xxyT5omIiIgcjCNcRERERA7GgIuIiIjIwRhwERERETkYAy4iIiIiB2PARdEydOhQeeeddyRRokSSPHnyCPe5dOmS1KxZU/dJkyaN9OzZU549exZun82bN0uxYsV05UvOnDllxowZsfQTuIds2bJpZ4Kwl2HDhoXb5/Dhw1KuXDlJkCCBVooeMWKEZcfrTsaPH6+vP17XUqVKyZ49e6w+JLfxzTffvPB7nTdvXtv9jx8/lo4dO0rKlCnF19dX6tevLzdu3LD0mF3R1q1b5YMPPtAK6XiNlyxZEu5+rKkbMGCApE+fXhImTCiVK1eWf/75J9w+d+/elU8//VSLoeJc0LJlS3nw4EEs/ySugQEXRcuTJ0/ko48+kvbt20d4f0hIiAZb2G/Hjh0yc+ZMDabwx2s6f/687lOxYkU5dOiQdO3aVVq1aiVr166NxZ/E9Q0ePFiuXbtmu3Tq1ClcO46qVatK1qxZZf/+/TJy5Eg9mU2ZMsXSY3Z18+bNk+7du+sy+QMHDkiRIkWkWrVqcvPmTasPzW0UKFAg3O/1tm3bbPd169ZNli9fLgsWLJAtW7ZoW7R69epZeryu6OHDh/q7iw8PEcGHs7Fjx8qkSZNk9+7dkjhxYv09R8BrQrB17NgxWbdunaxYsUKDuDZt2sTiT+FCUBaCKLqmT59uJEuW7IXbV61aZXh7exvXr1+33TZx4kQjadKkRnBwsG736tXLKFCgQLjva9SokVGtWrVYOHL3kDVrVmPMmDEvvX/ChAmGn5+f7TWH3r17G3ny5ImlI3RPJUuWNDp27GjbDgkJMTJkyGD4+/tbelzuYuDAgUaRIkUivC8gIMDw8fExFixYYLvtxIkTKG9k7Ny5MxaP0r3g9Vu8eLFtOzQ01EiXLp0xcuTIcK99/PjxjTlz5uj28ePH9fv27t1r22f16tWGl5eXceXKlVj+CZwfR7jIIXbu3CmFChWStGnT2m7DJyOMuODTkLkPhqjDwj64nSIPU4iYWnnzzTd1BCvstC1ey/Lly0u8ePHCvcanTp2Se/fuWXTErg2jthgtDPu7i16o2Obvrv1g6gpTXTly5NBRFKQoAF77p0+fhnv9Md2YJUsWvv52hBmI69evh3ud0S8Q0+fm64yvmEYsUaKEbR/sj78HjIhReGxeTQ6BP9SwwRaY27jvVfsgKAsKCtKcAXq1zp07aw5cihQpdOq2b9++Ov0yevRo22ucPXv2l/4/+Pn5WXLcruz27ds6ZR7R7+7JkyctOy53gpM6UhDy5Mmjv8+DBg3SPMSjR4/q7y0+QDyfO4rX33xvoZgzX8uIfs/DvocjPzesuHHj6vsR/y9exICLbPr06SPDhw9/5T4nTpwIl7xK1v4/II/IVLhwYT0RtW3bVvz9/dmCg1xWjRo1wv1eIwBDHuL8+fP5QYxcFgMusunRo4c0b978lftgeD8y0qVL98KqLXMVEe4zvz6/sgjbWO3iyW+qMfl/wIkJU4oXLlzQ0YGXvcZh/x8oalKlSiVx4sSJ8HXla+oYGM3KnTu3nDlzRqpUqaLTugEBAeFGufj625f5WuJ1xSpFE7aLFi1q2+f5hSJ4/8HKRf5fvIgBF9mkTp1aL/ZQunRpLR2BP0ZzyBmrWBBM5c+f37bPqlWrwn0f9sHtniwm/w9Y7Yn8CfM1x2v59ddfa86Lj4+P7TVGMMbpxOjBKGLx4sVlw4YNUqdOHb0tNDRUt7/44gurD88toczA2bNnpUmTJvra43cZrzfKQQByEpHj5envHfaEVAQETXidzQAL6R7IzTJXp+P1RuCLvDr8v8DGjRv17wEf/ug5Vmftk2u6ePGicfDgQWPQoEGGr6+vXsclMDBQ73/27JlRsGBBo2rVqsahQ4eMNWvWGKlTpzb69u1re4xz584ZiRIlMnr27KmrjMaPH2/EiRNH96XX27Fjh65QxOt79uxZ47ffftPXuGnTpuFWFaVNm9Zo0qSJcfToUWPu3Ln6mk+ePNnSY3d1eB2xWmvGjBm6UqtNmzZG8uTJw63Kpejr0aOHsXnzZuP8+fPG9u3bjcqVKxupUqUybt68qfe3a9fOyJIli7Fx40Zj3759RunSpfVCUYP3a/O9G+HA6NGj9Tre32HYsGH6e7106VLj8OHDRu3atY3s2bMbQUFBtseoXr268eabbxq7d+82tm3bZuTKlcto3LixhT+V82LARdHSrFkz/QN9/rJp0ybbPhcuXDBq1KhhJEyYUN8s8Sb69OnTcI+D/YsWLWrEixfPyJEjh5aZoMjZv3+/UapUKS3LkSBBAiNfvnzGd999Zzx+/Djcfn///bdRtmxZDRAyZsyob6IUc+PGjdOTPn53USZi165dVh+S20B5mPTp0+tri99ZbJ85c8Z2P074HTp00JIn+ABRt25d49q1a5YesyvC+29E7+N4fzdLQ/Tv318/tOH9o1KlSsapU6fCPcadO3c0wMIHb5T9adGihe2DN4XnhX+eH/UiIiIiIvthHS4iIiIiB2PARURERORgDLiIiIiIHIwBFxEREZGDMeAiIiIicjAGXEREREQOxoCLiIiIyMEYcBERERE5GAMuIiIiIgdjwEVERETkYAy4iIhcxLvvvitdu3a1+jCIKBoYcBERPadFixbSr1+/CO9r3ry51KlTJ0rf42hhnzui4/vjjz8kQYIE8v3331tyfEQkEtfqAyAiciYhISGyYsUKWblypUO/x15e99xTp06Vjh07yqRJkzQwIyJrcISLiNxaaGiofPfdd5IrVy4d5UmbNq2OAr3Mjh07xMfHR956661IP8fz34Opv06dOun0n5+fnz7nzz//LA8fPtSgJ0mSJJIzZ05ZvXp1uMcJDg6Wzp07S5o0afRYy5YtK3v37o3Sc4c1YsQIPY65c+cy2CKyGAMuInJr/v7+GnBMmTJFTp06JYsXL5by5cu/dP9ly5bJBx98IF5eXpF+joi+Z+bMmZIqVSrZs2ePBj3t27eXjz76SN555x05cOCAVK1aVZo0aSKPHj2yfU+vXr1k4cKF+r3YB0FZtWrV5O7du1E+3t69e8u3336ro19169aN9M9CRA5iEBG5sXLlyhlfffVVpPfPlSuXsWLFipfe36xZM6N27dqv/J4KFSoYZcuWtW0/e/bMSJw4sdGkSRPbbdeuXTPwFrxz507dfvDggeHj42PMnj3bts+TJ0+MDBkyGCNGjLA9bpcuXV753Di+ePHi6WNv2LAh0j83ETkWR7iIyK19+OGHMmzYMB0pQj7TvXv3XrrviRMn5OrVq1KpUqVIP/7Lvqdw4cK263HixJGUKVNKoUKFbLdhmhFu3rypX8+ePStPnz6VMmXK2PbBVGHJkiX1OaL63NmyZZOBAwfKgwcPIv2zEJHjMOAiIrf25ZdfamCCoGTMmDE6TXf+/PmXTs9VqVJF86ci62Xfg2ApLEz5hb3NnAJEjll0vey5M2bMKJs3b5YrV65I9erVJTAwMNrPQUT2wYCLiNxe7ty5NT9q//79GnwcP348wv2WLl0qtWvXjtJjR+d7IvLGG29IvHjxZPv27bbbMOKFpPn8+fNH+bmzZs0qW7ZskevXrzPoInICLAtBRG4Lq/TSpUunK/i8vb1l8uTJOrWHxPXnYWpv3759OmoUWdH5npdJnDixJtb37NlTUqRIIVmyZNHjR1J9y5Yto/XcmTNn1pGuihUr6pTqmjVrJGnSpDE+ViKKOgZcROS2Hj9+LEOHDpVLly6Jr6+v5kdt3LhRSzU8b/ny5ZovhZWFr4IpwLhx40bpeyILuWZ4fKxexIhUiRIlZO3atTE63kyZMoULuvB4DLqIYp8XMucteF4iIqdLrkfdK0w9vgqm55AH9tNPP0X6exzByucmoqhjDhcRkYgGL40bN37p/VjdiJpWGC2qXLlypL7Hkax8biKKOo5wERFFAoqHIoG9WbNmMmTIkCgVRiUiYsBFRERE5GCcUiQiIiJyMAZcRERERA7GgIuIiIjIwRhwERERETkYAy4iIiIiB2PARURERORgDLiIiIiIHIwBFxEREZGDMeAiIiIicjAGXERERETiWP8P3zfJXrhqyWEAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAo4AAAHnCAYAAAA2HdzvAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAaidJREFUeJzt3QdYlWX/B/Ave4MIKKCAe+MWR87cmWVa5h6pZcM0LdPs1Xyr17KllTP7q01XaeZK09LcE/eeiICTvQ/nf/1u5ASKekTgOeP7ua7nPeuBc/O8J/xyj99to9fr9SAiIiIiegDbB51ARERERCQYHImIiIjIKAyORERERGQUBkciIiIiMgqDIxEREREZhcGRiIiIiIzC4EhERERERmFwJCIiIiKjMDgSERERkVEYHInIarVu3VodRERkHAZHIqIC+OmnnzBt2rSH/jqdTofAwEDY2Nhg7dq1RdI2IqKiYsO9qonIWqWnp6tbR0fHh/7aJ598EkeOHMGFCxce6us2bNiADh06oFy5cnjsscfwww8/PPR7ExFphT2ORGS1JDAWJDQ+CgmK9evXxxtvvIEVK1YgKSmpWN+fiOhRMDgSkVl477331PDuiRMn0LNnT3h6esLHxwcjR45EampqnnMzMzPx/vvvo2LFinByclK9e++88w7S0tLuO8fx77//Vu+xZMkSfPjhhyhbtiycnZ3Rtm1bnDlzJs/XrV69GhcvXlTnyyHv8SApKSlYvnw5evXqpX4Gefzbb78VyvUhIioO9sXyLkREhUQCl4S0KVOmYOfOnfjyyy9x69YtfPfdd4Zzhg4dioULF+LZZ5/FmDFjsGvXLnX+8ePHVXB7kI8++gi2trZ48803ERcXh6lTp6Jv377q+4gJEyao5y9fvowvvvhCPefu7v7A77ty5UokJiaq4Ojv768C6I8//og+ffo80jUhIiouDI5EZFbKly9v6KV79dVXVc/jzJkzVcirXbs2Dh48qEKjhMdvvvlGnffKK6+gVKlS+PTTT/HXX3+hTZs2930P6cEMDw83DGN7e3urnk2Z01irVi20b98eZcqUUYG1X79+DzVM3axZMwQFBanHEiClbdeuXYOfn98jXBUiouLBoWoiMisSFnMbMWKEul2zZk2e29GjR+c5T3oehQwxP8jgwYPzzH1s0aKFuj137lyB233jxg388ccf6N27t+G5Hj16GIbGiYjMAYMjEZmVypUr53ks8xhlWDlndbPMO5THlSpVynOeDA2XKFFCvf4gwcHBeR5Lj6OQHsaCWrx4MTIyMlCvXj01X1KOmzdvonHjxmq4mojIHHComojMmvTYPczzxrCzs8v3+UepXpYTDqUET36kN7NChQoF/v5ERMWBwZGIzMrp06fVPMcc0nOXlZVlWNUcEhKiHst51atXN5wXExOD2NhY9XpheJhgev78eWzfvh2vvfYaWrVqlec1aWv//v1VQfF33323UNpGRFRUOFRNRGZlxowZeR5/9dVX6rZz587q9oknnlC3d+7q8vnnn6vbLl26FEo73Nzc1Mrqh+ltHDt2rFrpnfuQVeISJjlcTUTmgD2ORGRWpPfuqaeeQqdOnbBjxw61UlnK2dSpU0e9LrcDBw7E3LlzVQ+jhLLdu3erldbdunV74IpqYzVo0EDNW5RFOI0aNVLleLp27ZrvuRIK69ata1hNfSf5eWSRz/79+1VxcCIiU8UeRyIyKxLWpKj3uHHj1AppGf799ttv85wzb948TJ48GXv27MGoUaOwadMmjB8/HosWLSq0dkgZHQms8+fPV7c5q7vvJGFQipbfK1SKnNe4/SARmTruVU1EZrNzjIRBqXno6+urdXOIiKySxfc4btmyRf01HxgYqCazy96w95Oz5didR3R0dLG1mYiIiMgUWXxwTEpKUnOe7pxQ/yAnT55EVFSU4ZBdJ4iIiIismcUvjpGVljmrLR+GBEUpFkxEREREVhIcC0pWQKalpal9aWVu1b2K9go5T47cddlkRwgfH59HKkJMRP+S1cs52wjGx8dr3RwiIoshy10SEhLUtD7Zeet+GBzvEBAQgNmzZ6Nhw4YqDMrqzNatW2PXrl33LJMxZcoUNWmfiIiIyFxFRESgbNmy9z3HqlZVS+/f8uXLVS23hyF14GTv2u+//96oHkcpCiznRwDwRNFIqVIF5xcuLKLvTkTFqfzAgXA5dUrrZhCRlYoHIFVmpfatl5fXfc9lj6MRwsLCsHXr1nu+LjXl5LiTZxEGRwc7O1VwmIjMn6edHVy0bgQRWT0bI6bXWfyq6sIQHh6uhrCJiIiIrJnF9zgmJibizJkzebYrkyBYsmRJNZwsu0lERkbiu+++M+xvW758edSsWROpqalqjqPsOrF+/XoNfwoiIiIi7Vl8cNy7d2+evWlzVmXKXrYLFixQNRovXbpkeD09PR1jxoxRYdLV1RW1a9fGn3/+WWj72xIRERGZK6taHFNcpFSITC6NK8rFMdWr4+ySJUX03YmoOFXs2RMux49r3QwisuLFMV63F/d6et4/uXCOIxEREREZhcGRiIiIiIzC4EhERERERmFwJCIiIiKjMDgSERERkVEYHImIiIjIKAyORERERGQUBkciIiIiMgqDIxEREREZhcGRiIiIiIzC4EhERERERmFwJCIiIiKjMDgSERERkVEYHImIiIjIKAyORERERGQUBkciIiIiMgqDIxEREREZhcGRiIiIiIzC4EhERERERmFwJCIiIiKjMDgSERERkVEYHImIiIjIKAyORERERGQUBkciIiIiMgqDIxEREREZhcGRiIiIiIzC4EhERERERmFwJCIiIiKjMDgSERERkVEYHImIiIjIKAyORERERGQUBkciIiIiMgqDIxEREREZhcGRiIiIiIzC4EhERERERmFwJCIiIiKjMDgSERERkVEYHImIiIjIKBYfHLds2YKuXbsiMDAQNjY2WLFixQO/5u+//0b9+vXh5OSESpUqYcGCBcXSViIiIiJTZvHBMSkpCXXq1MGMGTOMOv/8+fPo0qUL2rRpg/DwcIwaNQpDhw7FH3/8UeRtJSIiIjJl9rBwnTt3VoexZs+ejfLly+Ozzz5Tj6tXr46tW7fiiy++QMeOHYuwpURERESmzeJ7HB/Wjh070K5duzzPSWCU5+8lLS0N8fHxeQ4iIiIiS8PgeIfo6GiULl06z3PyWMJgSkpKvl8zZcoUeHl5GY6goKBiai0RERFR8bH4oeriMH78eIwePdrwWEKmCo+bNwPu7kXzpjY2RfN9iaj4/fgjoNdr3QoislaJiUCrVkadyuB4B39/f8TExOR5Th57enrCxcUl36+R1ddy3KVuXcDTs2gaKr2fZ88WzfcmouJVrRpwj98vRERF7iGm2HGo+g5NmzbFxo0b8zy3YcMG9TwRERGRNbP44JiYmKjK6siRU25H7l+6dMkwzDxgwADD+cOHD8e5c+cwduxYnDhxAjNnzsSSJUvwxhtvaPYzEBEREZkCiw+Oe/fuRb169dQhZC6i3J84caJ6HBUVZQiRQkrxrF69WvUySv1HKcszb948luIhIiIiq2ej13NGdmGTxTGyujouLk7NjSwKssL7LOc4ElmEihUr3nMONRGRKeUWi+9xJCIiIqLCweBIREREREZhcCQiIiIiozA4EhEREZFRGByJiIiIyCgMjkRERERkFAZHIiIiIjIKgyMRERERGYXBkYiIiIiMwuBIREREREZhcCQiIiIiozA4EhEREZFRGByJiIiIyCgMjkRERERkFAZHIiIiIjIKgyMRERERGYXBkYiIiIiMwuBIREREREZhcCQiIiIiozA4EhEREZFRGByJiIiIyCgMjkRERERkFAZHIiIiIjIKgyMRERERGYXBkYiIiIiMwuBIREREREZhcCQiIiIiozA4EhEREZFRGByJiIiIyCgMjkRERERkFHsUsYyMDERHRyM5ORl+fn4oWbJkUb8lEREREZlLj2NCQgJmzZqFVq1awdPTE+XKlUP16tVVcAwJCcGwYcOwZ8+eonhrIiIiIjKX4Pj555+roDh//ny0a9cOK1asQHh4OE6dOoUdO3Zg0qRJyMzMRIcOHdCpUyecPn26sJtAREREROYwVC09iVu2bEHNmjXzfT0sLAwvvPACZs+ercLlP//8g8qVKxd2M4iIiIjI1IPjzz//bNR5Tk5OGD58eGG/PRERERGZ46pq6VlcsGCB4fHFixexdu1axMXFFeXbEhEREZG5Bcc1a9agWrVq6n5sbCwaNGiAbt26oUaNGjh58mRRvjURERERmVNwlJ7FMmXKqPu//PIL/P39ER8fj+effx7jx48vyrcmIiIiInMKjkFBQTh//ry6v3TpUgwaNMgwt3Hbtm0oLjNmzFArvZ2dndG4cWPs3r37nufK0LqNjU2eQ76OiIiIyNoVaXCUoPj666/jP//5DzZu3KiGqUVWVhYSExNRHBYvXozRo0erMkD79+9HnTp10LFjR1y9evWeXyO1J6OiogyHzM0kIiIisnZFunOMDEfr9XqsX78eH330ESpVqmQo2RMcHIziIHUlpeD44MGD1WMpA7R69Wr83//9H8aNG5fv10gvowyrExEREVEx9ThKAJswYQI2b96MMWPGGJ6XLQj79OmDopaeno59+/apQuQ5bG1t1WMpRn4v0hsqO9zIUPvTTz+No0eP3vd90tLS1NzN3AcRERGRpSnyvarz89ZbbxXL+1y/fh06nQ6lS5fO87w8PnHiRL5fU7VqVdUbWbt2bbW459NPP0WzZs1UeCxbtmy+XzNlyhRMnjy5SH4GIiIiIovtcbx06dJDnR8ZGQlT0rRpUwwYMAB169ZVe23/+uuvao/tOXPm3HdIXkJmzhEREVGsbSYiIiIyy+DYqFEjvPTSS2oe471IuPrmm29Qq1YtVaanqPj6+sLOzg4xMTF5npfHxs5hdHBwQL169XDmzJl7niMrxWVBTe6DiIiIyNIU+lD1sWPH8OGHH6J9+/aqjI0U/Q4MDFT3b926pV6XYd/69etj6tSpeOKJJ1BUHB0d1fvfuaJbHr/22mtGfQ8Z6j58+HCRtrMgtp+7ib0nE2BvC9jb2qjDzhZwULc2huflvoMtbj+X/byDnQ2c7WzgZG+rHstcVCIiIqJiD44+Pj5qJbOER1m9vHXrVlXOJiUlRfUA9u3bV5XDkd7G4iCleAYOHIiGDRsiLCwM06ZNQ1JSkmGVtQxLS5Fymaco/vvf/6JJkyZqBbjsdvPJJ5+o9g8dOhSm5LeD0Vh56OYjfx+JjE72NnBUQdIGTnJrZ3v3c/Y2cHWwVYeLuv33ce77LrfvS1AlIiIiy1Jki2NcXFxQpUoV1dNnb6/JGhxFdqm5du0aJk6cqFZzy9zFdevWGRbMyJxMWWmdQ3pFpXyPnOvt7a16LLdv3662STQloYEeuB4bj0ydHjq9HplZQGaW3Gbf1+W6n/t5uU3X6ZGlz/4+cpOaqVcH0gqvfRI2JUR6ONnBw9EW7o628HDKvvWU527fl1v1upMtPB3t1NewB5SIiMg02eil0GIRkUAmw8WyX7UU3s59SO+jpZJyPF5eXmouZ1HNd5Qe3LNnzxb46yVApmVmh8i0zCykqVu9us1+Ltfztx8nZ2QhJSMLyRnZ97OPvM/L1z4K6aj0crKDl7MtvF3s1P0SLrYo4WyX68h+7OVsp4bdicxdxYoV1R/bRESmnluKtCtQhqplKFiGfTMyMtR2fkeOHDEU2M4JkVL6pnfv3kXZFLqDmu/oaAM39ciu0L6vBNKcEJmUkYXEtCwkpOuQkJaFxPQsdZugbnM9d/v5nJ7QW6k6dVyIzXjg+7k52sL7dsgs6WIHH1d7+LjawSfXfXlefl4iIiIy4R5H6Wn8+OOPVRHtHDJMLAtTZDhYtv07dOiQCpOytZ+lMIceR1MkPZwSIOPSshCbqlNHnNymZCE2TW6zn4tNzVLPG9u5KZFRejAlSGaHy+xgWcrNHqXc7dWtr6sd52WSZtjjSERaMpkeR1lUIr2JuXXq1Emtpl6yZAkWLVpUlG9PZkZWecvhm90Nel9Zej2S0iVgZofMm8k63EjJxA25VfflNhM3U3Rqbmf2eem4V9SWzCiBUoVJw2GH0u728Lv9mMPiRERk7eyLupj2d999h0mTJuV5Xuoi5qxqJioIW5vbC2+c7BDk5XDfgBmflnU7UGYHSwmT15MzcS1Jh5gkuc1U4VIey3H0HquEpLcywMMeAe72CPBwUPcDPezh7+GgFvoQERFZuiINjjNnzlSlbS5fvoxRo0ahevXqqi7ijBkzUKJEiaJ8ayJDwMxZVFOxpOM9w6UMg1/NFSSvJmUiJjE7XMp9WXUugVOOo1fvDpaeTra3Q+W/gVLCZaCnvVpFTkREZAmKNDjKHMedO3eqOY2hoaFqhbUER9mNZd68eUX51kQPFS5LyvxHV3tU83O663X97V5LCZJRciRkIDohE1cS5H6mWsgjr8enpePk9fS7vt7LyRZlvRwQ5OmQfevlgLKeDvBzs1PvTUREZC6KvMCihMc///xT1UsMDw9XJXqkNmJAQEBRvzVRoZAqAFL6R44qvncHSylHFH07UEYZAmWGupWhcVnsE3c17a6eSql1WcbT3hAk1e3t+1wFTkREpqjYKnMHBwerg8jSyE45Fbwd1XEnKU0UGZ+BiPgMXI6T20x1eyUhQ9XHPHcrQx25yTaQEh5DSjigXAlHlCvhgBBvR/i52rE4OhERaUq7LV2IrIBsz1jJx0kducnOPtJLmR0mc0JlBi7FZSAlQ69qWMqxGcmGr3FzsEFICcd/A6W3hEtHLswhIqJiw+BIpAGpGVnG00Edje+YTykLci7EpmeHx1vZt9JrmZShx7FraerITUoGycKfSiUd1a30fEpBdCIiosLG4EhkQmQoWhUld7dHWNl/n8/Q6XE5Xnoh03FRBcoMXIxNx7VknVq0I8f2S//2TkpNSgmQOWFSDilyzqFuIiJ6FAyORGZAio+X93ZUR26ydeO5W+k4e/PfIzI+pxB6CvZEpuQpGSQBsoqPo1rkU9XXSZUpIiIiMhaDI5EZkwLodfxd1JF7Qc75XGHyzM10NXdSSgYdiEpVR47Sbtkrxav4SJDM7pmU3XuIiIjyw+BIZIELcmqUclZH7n3AZYhbQuSp62k4eSNdLciJUUXPk/HPxexhbtlVsZx3dq+k9EjKISWDWG+SiIgEgyORFZBeRNWz6OuEJ6p4qOdkr+/TN9Jw6oYULk9Th+zpndNTufZ0ojrPw9EW1f2cUKOUE2r4OaGyjxP37SYislIMjkRWys3RFnUDXNSRe0X3SQmT17PDpATIhPQs7I5MUYdwsIUKjxIka/o5qVDpzm0ViYisAoMjEd21ortFiJt6LjNLr8LjsatSBihV3cpOODllgZbd/tpgL4fsIFnKCaGlneHryl8tRESWiL/dieieZOvDnLmOz8BT9UrKVooqOF7NDpKRCZlq8Y0c624Pbwd62KN2aWeE+jurW9aVJCKyDAyORPRQvZI5hcvbV3RXz8Wm6nD8muzFnYqjMWk4eytdhcsrCYlYdyY7SMo+3LVLZ/dGyiH7fhMRkflhcCSiRyK1IJsGuapDJKZnqRB5KDoVh2NScf5WBiJkS8W4DKw+lR0kZdtE6YmsG5AdJGW/byIiMn0MjkRUqGTv7MZlXdWRU6T8cEyaCpFyyBaKF28fv59MUCWAZIFNvQAX1AtwVrUkZUtGIiIyPQyORFTkRcqbBbuqQ8SlSpBMxaGY7GLkUQmZOHI1TR3fH8wu/yM9kRIiJUz6ufHXFBGRqeBvZCIqVjK/sXmImzpEdEKGCpD7o1JwMDpVlf+RguQ5RcllfqSEyPoBLggt7cSdbYiINMTgSESa8vdwQGc5qnhAl6XHqRtp2H8luzdS7ufMj1x5IgFOdjao7e+MsDIuaFTGBb7sjSQiKlb8rUtEJkPmNlb3c1ZH3zpAYpoOh2IkSKZg75UUXE/WYU9kijpEeW8HFSDlkP22OTeSiKhoMTgSkclyzzU/UmpIysKanOB44lqaWrEtx5Ij8fB0skWDwOwQWT/QRS3SISKiwsXgSERmU0OyvLejOnrW8lKLbKQnUrZC3B+Vivi0LPx1PkkdslJbhrSlRFCTsi4oyZ1siIgKBX+bEpHZLrJpU8FdHbI1ohQhz+mNlDmRMkdSjpm7gaq+joZak1K8nIiICobBkYgsYmvEnF1pXqjvjcj4DOyISFbHyevphmPBgVi1r3bTIBcVIqVmpPRkEhGRcRgcicjiSK/iszW91HEjORO7LqeoECm72eTsq734SDz83OzwWLArWoS4oYoPQyQR0YMwOBKRRfNxtccTVTzUIau091yREJmCfZEpuJakw4rjCeoo5ZZdX7JFiCsqsSeSiChfDI5EZFWrtNuUd1dHWmaWWlSz9WKS6pG8mqTDr8fi1eHvbo/mIdk9kRW8HRgiiYhuY3AkIqskO9DkLJiRECl1IrdeTMbuyymITszEsqPx6gj0sFe9kC3KuaFcCUetm01EpCkGRyKyehIiHwt2U0dqZpZamf3PhWQVJq8kZKr5kHJIwfE25d3QspwbfFnih4isEH/zERHl4mxvq4ao5UjOyMKeyynYcjEJ+66k3C44Hov5+2NVnUgJkc2CXOHKYuNEZCUYHImI7sHVwRatyrupIyFNp4aypcD4sWtpOBidqo6Zu2+icVkXFSJlxxopDUREZKkYHImIjODhZIfOVTzUEZ2Ygc3nJUQm4nJ8Jv65mKwO2fZQhrHbVXBDJR8nrZtMRFToGByJiB6Sv7sDng/1Qs9anjh7M131Qm6+kITY1CysOpmgDpkP2b6iO1qXd4Onk53WTSYiKhRWMTFnxowZKFeuHJydndG4cWPs3r37vucvXboU1apVU+eHhoZizZo1xdZWIjIfUqZHehaHNSyJhd3LYvLjpdAyxBX2tlDzIefuvYUBv1zGR1uuqTmSuiy91k0mInokFh8cFy9ejNGjR2PSpEnYv38/6tSpg44dO+Lq1av5nr99+3b07t0bQ4YMwYEDB9CtWzd1HDlypNjbTkTmw87WBg0CXTC2hR++71EWwxuVVFsaZmYBWy8lY9KmqxiyIhLfh9/ClYQMrZtLRFQgNnq93qL/BJYexkaNGuHrr79Wj7OyshAUFIQRI0Zg3Lhxd53//PPPIykpCatWrTI816RJE9StWxezZ8826j3j4+Ph5eWFuLg4eHp6oiikpKTg7NmzRfK9iajwnLuZjg1nE/H3+SQkpGcZng8t7YTOlT1UHclqVSrBxcVF03YSkfWKf4jcYtFzHNPT07Fv3z6MHz/e8JytrS3atWuHHTt25Ps18rz0UOYmPZQrVqy45/ukpaWpI/f/AUp4OODujiIhO1k4OBTN9yaiQlOhpCNeKlkSL9T3xq7LySpE7r+SisMxaerwcrJFzwo30b+8C4LdLfpXMhGZqsREo0+16N9S169fh06nQ+nSpfM8L49PnDiR79dER0fne748fy9TpkzB5MmT736hVSsUmerVgSVLiu77E1GhcrCzUXthy3EtKRPrzyTijzOJuJmiwzfHEzHvWDxanD+AvuFr0fbMbtjr/+2dJCIyFRY/x7E4SI+mdO/mHBEREVo3iYhMmJ+bPfrWKYH5z5TBhFZ+aH71JPQ2tthSoQFe6v4umr/8f/jisT6I8vDRuqlERNbT4+jr6ws7OzvExMTkeV4e+/v75/s18vzDnC+cnJzUQUT0sAtqZI5jv53zcDXqFn6u0xFLQ9sj2sMX05v3wVfNnkeH0zsxaN/vaBxxBCwtTkRas+geR0dHRzRo0AAbN240PCeLY+Rx06ZN8/0aeT73+WLDhg33PJ+IqDCExEZj3OaF2D5rEL5cORWNLx1Glq0d1lV9DL36fIQnBn2JJaHtkWrvqHVTiciKWXSPo5CFLgMHDkTDhg0RFhaGadOmqVXTgwcPVq8PGDAAZcqUUfMUxciRI9GqVSt89tln6NKlCxYtWoS9e/di7ty5Gv8kRGQNnHSZeOr4FnWc8g3Ggvpd8WutNjheugLGPjESU1oPQp/wdegXvgYBCTe0bi4RWRmLD45SXufatWuYOHGiWuAiZXXWrVtnWABz6dIltdI6R7NmzfDTTz/h3XffxTvvvIPKlSurFdW1atXS8KcgImtU5fol/G/9DIzdshBLarfHwvpPItKrNGY0ex6zmzyLTie3YfC+39Eg8jiHsYmoWFh8HUdN6yEBKJoqjkBK9eo4y1XVRBahYs+ecDl+/IHnZdrY4s9KjbGgQVfsDKlteD406jSG7lmBJ05uhUOWrohbS0SWRooIegFG1XFkcCwCDI5EVBTBMbdjfuWxsMGTWFGjNdIcshfnlYm7ihf2rkCvg+vhlpFaRK0lIkvD4KgxBkciKurgmOOmiyd+rNtZ9ULecCuhnvNMTUS/A2swaN9KlEqKLeTWEpE1B0eLXlVNRGTpSqbEY8SOxdg2+wV8uO5rlL8ZiXhnd8xs2hPNh8/H251G4EzJslo3k4gsBIMjEZEFcM5MR9+D6/DnvJcx+9cPUT/yONLtHbC4Tke0GzYbQ7v/B3vLVNe6mURk5ix+VTURkTWx02eh0+kd6pCgOCesO/6s3NhwSH3I17cvQrOLB7kSm4geGoMjEZGFahh5HA2Xf4izJcvgm7Du+KXW49gVHIq+waGoF3kCr+1YjMfP7mGAJCKjcaiaiMjCVbwZiY/WfYXNc4Zh0N6VcMpIw4Ey1TDk2UnoMmg61lZphizGRyIyAoMjEZGVCEy4jvc2zsXW2UPw0s5lcEtLxrHSFfHyM++gw5AZWF6jtaoVSUR0L/wNQURkZfySYzF+8wIVIF/f9pMq33PGNxhvdH0T7YbOxq8120DHAElE+eBvBiIiK+WdmoDRW3/C1lkv4K3NC1EyOQ4XSgZi9JNjVA/k79VacAibiPJgcCQisnKe6cl4dedS/DN7CMb+vQAlUuJx1icII55+G08M/hLrKjcFd4ogIsHgSGSEwYMHIzQ0VB0nTpzAnj171H3ZJcicyc+wcePGPI/laNasmabtIm3INoWv7FqmAuQb//wAj9REnChVHsO7T0DXgdOwqUJDBkgiK8fgSGSkHj164K+//kKlSpVQt25ddd/Dw8Por58wYQJef/11mDL5md5++22tm0Ea80hPwcjti9QcyNe2L1KLaI74V8ILz72HZ/p/im0hdbRuIhFphMGRyEguLi7w9fWFvb09HBwc1H0bm+Kf/5WRkVFk31t+Jnd39yL7/mRevNKS8OY/P+CfOUPx0q5f4JyRivDAaujb60MMeG4yjpYqr3UTiaiYMTgSFcCdQ9UrVqxQw7vbtm3DU089hbCwMAwfPhzXrl1Tr8+cORMrV65UPXo5w8HyPUR0dDTGjBmjvv6xxx7DiBEjEBkZeVdP5dy5c/H444+ja9eumD59Ovr06ZNvr+isWbPU/SNHjmDYsGFo0aIFmjZtikGDBuHYsWPFdIXI0vbDHv/3fGyZM1TVgXTQZWBLhQboMvgrjHpyDCI8S2ndRCIqJgyORIUkJSUFCxYswJQpU9RtVFQUPv30U/WahLaOHTuqYCjhUQ4Z7pbew5deeglubm7qa77//nu4urqq0Jm7Z3HXrl24cOGCCo9ff/01unTpgsOHDyMiIsJwzpkzZ3Dq1Cn1mkhKSlIhduHChfjxxx8REhKCV155RT1PVBClkmJVHUjZD/upY3+r51bUbIO2w+bgv48PxU0XT62bSERFjMGRqJBkZmZi4sSJqFmzJmrUqIHevXurwCckDDo5OcHR0VENB8shw93r1q1DVlYWJk+ejCpVqqBChQr44IMPVC9kTo9kzjC5nCPzK3OOqlWrYvXq1YZz5H7t2rURHBysHjdu3Fj1Tsr3lGPSpElITU3F3r17Nbg6ZElCYqPx5e+fYtWCkWh+4QDS7R3wf426odVL3+Drpj2R7OCkdROJqIhwr2qiQiLhLigoyPDYz88PN2/evO/XSA+h9BpKyMstLS0tT29i5cqVVdDMTXoWly9frnon9Xo91q5di/79+xtev379uuqdlAAq7dDpdCo4Sk8oUWGoFXMWPyz+D/4pVxcftRqEo/6V8GnLAfiuXheM3bIQ3Y/8BVuuwyayKAyORIVEFs3cSQLd/SQnJ6veyY8++uiu17y9vfOE0jt17twZX3zxhZq3KEFTeik7depkeP3dd99FbGysWiUdGBioejv79etXpItryDq1uBCOxy68gd+rt8QnLfvjcgl/vNllNBbW74qJG79Bo0jOrSWyFAyORMVEegxlWDq36tWrq+HqkiVLPvRqZn9/fzRs2FANUUtwbNKkCXx8fAyvHzhwQIXHli1bqscSLG/dulVIPw1RXtKz+PTxzeh0ahvmN3gaXzd7HocDKuO5flPR5fgWjPt7AYLir2rdTCJ6RJzjSFRMypQpo4amz58/rwKc9PzJcLP0LMqq6X379uHy5ctqaFkW2EjQexD5egme69evNyyKySGLYX7//XecO3cOhw4dUj2Pzs7ORfgTEgFOukwM3/0L/pr7InqHr4ONPgurq7dE22Gz8UmL/khy4GeQyJwxOBIVEymVU65cOfTq1Uv1AoaHh6shaFlNHRAQgDfeeANPP/20WmAjPYjG9EC2b99eDUfL3MW2bdvmeU0W00i5oJ49e+Kdd95B3759Vc8mUXHwS47FlD++Vgtomlw8hHR7R8xo9jxavzgXS2u15R7YRGbKRv+gSVj00OQfay8vL8TJHrBF9B4p1avj7JIlRfTdKb8tB6tVq2YVu6pITcqpU6di+/btWjfFalTs2RMux4/DUsk/MusrN8H/2ryAi96B6rk6V07i/Q2zUDv6jNbNI7J68VLwH0BcXBw8Pe+fXNjjSGSkRYsWqcLeMtxsqeTne//997VuBlkY6VvseHon1n/7Ct7561u4pyXjYGBVPD3gc0zo8ApinblbEZG5YI9jEWCPo+WJiYlRw8dChpXvLI1jKS5duqRubW1tUbZsWa2bYzUsvcfxTlfdvFXvoxQPF97JcRi3eQGeO/Qny/cQmXiPI4NjEWBwJKKHYW3BMcfOoFqY2P5lnPILUY/rRZ5Qw9dSH5KIig+HqomIyOQ1iTiC1Qtex7ub5sEtLRkHylTDUwM+x3/aD0eck5vWzSOifDA4EhGRZhyydBi6ZwU2zRuu9r/OsrXD9/WfRNuhs7G66mMcuCYyMQyORESkudKJN9X+1z/9PB4VbkTgurs3Xu02HkN7TMQVD1+tm0dEtzE4EhGRyWh26TDWzH8dr2/7CQ66DGysFIb2Q2ZifoOu0NnwnywirfG/QiIiMinOugyM3voTVi8YiQaXjyHJyRWT272E7v0+wXG/clo3j8iqMTgSEZFJqnL9Epb++Dbe/2MGPNKSVO3HrgOnYWrLAUi1s8ySWESmjsGRiIhMltR17B++FhvmvYJOJ7ch084eM5v2xJODpiM8oIrWzSOyOgyORERk8vwTb2D2iimY/euH8E28hTO+wWro+uOWA5FmZ69184isBoMjERGZjU6nd2DDt68YSvfMavqc6n086F9Z66YRWQUGRyIiMiveqQmqdI/qfUy6hdO+Ieje/1N80qI/ex+JihiDIxERmW3v4/pvX0XXY5uhs7XDjGbP46mB03C4dEWtm0ZksRgciYjIbJVMicdXv3+CWcv/B5+kWJz0K4dn+n+GGU2eY91HoiJg0f9V3bx5E3379lUbdpcoUQJDhgxBYmLifb+mdevWsLGxyXMMHz682NpMREQPr/Op7Vj/7SvofHvl9SetBqJ37/8hwrOU1k0jsigWHRwlNB49ehQbNmzAqlWrsGXLFrz44osP/Lphw4YhKirKcEydOrVY2ktERAXnkxKPmSum4JPVX8AtLRm7g2rhiRe+wvIarbnnNVEhsdjgePz4caxbtw7z5s1D48aN0bx5c3z11VdYtGgRrly5ct+vdXV1hb+/v+GQHksiIjJ9NgCeO7IRa+ePQP3I40hwcsMbXd/E613fQpyTm9bNIzJ7Frv8bMeOHWp4umHDhobn2rVrB1tbW+zatQvPPPPMPb/2xx9/xA8//KBCY9euXfGf//xHhcl7SUtLU0eOuLg4dRuPopOi0z1w2J2IzEO8TocMrRthYUrExWDeD2MxL6w7ZjV5Fr9VbIRd/abif+tmICzymNbNIzIpOXlFr9dbb3CMjo5GqVJ557bY29ujZMmS6rV76dOnD0JCQhAYGIhDhw7h7bffxsmTJ/Hrr7/e82umTJmCyZMn3/V8EIrQqVNA06ZF+Q5ERGZOD+z+JfsAEAGgvdZNIjJhCQkJ8PLysqzgOG7cOHz88ccPHKYuqNxzIENDQxEQEIC2bdvi7NmzqFgx/xIP48ePx+jRow2Ps7Ky1MIcHx8ftbhGa/Hx8QgKCkJERASH3Y3Ea1YwvG4Fw+tWMLxuBcPr9vAs/Zrp9XoVGqXT7EHMLjiOGTMGgwYNuu85FSpUUMPMV69ezfN8ZmamCnTymrFkfqQ4c+bMPYOjk5OTOnKTYXJTIx92S/zAFyVes4LhdSsYXreC4XUrGF63h+dpwdfsQT2NZhsc/fz81PEgTZs2RWxsLPbt24cGDRqo5zZt2qR6A3PCoDHCw8PVrfQ8EhEREVkzi11VXb16dXTq1EmV1tm9eze2bduG1157Db169TJ0xUZGRqJatWrqdSHD0e+//74KmxcuXMDKlSsxYMAAtGzZErVr19b4JyIiIiLSlsUGx5zV0RIMZY7iE088oUryzJ071/B6RkaGWviSnJysHjs6OuLPP/9Ehw4d1NfJsHiPHj3w+++/w5zJMPqkSZPuGk6ne+M1Kxhet4LhdSsYXreC4XV7eLxm/7LRG7P2moiIiIisnkX3OBIRERFR4WFwJCIiIiKjMDgSERERkWWW4zEHUvJH9sP28PAwiQLgRERERMYUAJetme+HwbEISGiUCvNERERE5kJ2xilbtux9z2FwLALS0ygsdWsiIiIisrwtFXPyy/0wOBaBnOFpS96aiIiIiCyLMdPruDiGiIiIiIzCHkciIg3odDr8888/iIqKQkBAAFq0aAE7Ozutm0VEdF8MjkRExezXX3/FyJEjcfnyZcNzMiF9+vTp6N69u6ZtIyK6Hw5VExEVc2h89tln84RGERkZqZ6X14mITBWDIxFRMQ5PS0+j1Ey7U85zo0aNUucREZkiDlUTET2i1Awdriem4UZiOmJTMpCYmomktEwk3j7kflJ6Ji5dvoKU2s/Ct649YGsLG1u5tZOljIAuE3q9Dik6HQbM+BNlAv1hb2cLVwc7uDvbw93JHm63Dw85nO3h4+4EH3dH9ZibDRBRcWBwJCK6B+kFvJGUjshbKYiMTTHcXolNwbXbQfFGYhqS0o3vIXQPbffAc7ZdyQSu5B3Kvh9HO1sVIH1vB8lSHk4oU8IVgSWcUcbbBWVLuMLfyxmO9hxkIqJHw+BIRFYvOT0T564l4ey1RJy9fSuPz19PRGpGltHhzdfdEV6u2T2Abk7SU+gAdyc7uDnaw9XJHpGXLmDe3LnQZ2UCWTros3TqVrG1g430PtraYfgrryCkXAVk6LKQkq7L03OZfatDXEoGbialq8fpuixExaWq416kQ9Lf0xnlfd1Qwc8NFf3cUcHPHRX93BDo5QJbW/ZYEtGD2ejzm2xDj1yB3cvLC3FxcSwATmRC5NdddHwqjkbG4+gVOeJwLCoel2+l3DdwSQ9eYAkXlJHDO/u2lIezCoo5vXzuRgwXy9zFcuXKqYUw+f3qla+X1dXnz583ujSPBMsbSdm9nzJcLkdMfNq/vaS3j/TMewdgZwdbVC7lgeoBHqgR4IkagV6oFuABT2cHo9pARNaTW9jjSEQWS3rlDly6hf0Xb+FARKwKi9JLlx8fN8dcPXH/9sjJcK+TfeHUV5QwKCV3ZPW0hMTc4TEndE6bNu2h6jm6ONqhrKMrynq73vOcrCw9rielIeJmCs5Jb+r1JHUrvasXbySpXtXDkXHqyC24pKsKknWDS6BeUAnULltCvR8RWS/2OBYB9jgSFT/5VXbpZjL2XLiFfRfluInTVxNx5284O1sbVPJzR81A6VnzRE3pXfP3gLebo6Z1HGWfWAmNxV3HMVOXpa7byegEHI+KVz2wx67E40o+w95y7aRXsl6QN+oFl0DDkJIIKunChTlEVpRbGByLAIMjUfG4lpCG7WevY9sZOW6oIdk7lfNxRf0Qb9QP9kZoGS9U9feAs4P2vWamvnNMbHK6CpFHIuNw4FIs9l+6pYbA7yTD9o0rlETTCj5oWtHnvj2fRGSaGBw1xuBIVDRknt7u8zfx18mrKiyeiE7I87qDnY0aTm0oQTHEGw1CvNUcRCocUXEp2H8xNnv4/9ItHLoch8ysvP+ESA+khMgWlf3QsrIfvFw5T5LI1DE4aozBkajwyGKPv09ew6YTMdhy6rpaRZybzMFrXtkXzSr6IKx8Sbg6cup2ca5G33vhFnacu4Gd526oIKnLFSRlobb09LapVgqtqvip6QEc1iYyPQyOGmNwJHo0ETeTsfZIFNYdiVaLWnL/lpIexMer+aFVlVJqaLRkMc5NpPuTUL/nwk1sP3Mdm09dw6mYxDyv+3k4oXUVP3So6Y8WlX1NYsoAEYHBUWsMjkQP7/KtZKw9HI1Vh6NwMCI2z2vSU9W2emm0rVZKzVNkzUHz+f9UAuRfJ66puajJuQqluzraoU3VUuhUy1/1SEo5IyLSBoOjxhgciYxf3PJbeCRWHYpCeK6wKKOZjcuXRJfQALSrURoBXi6atpMeXVqmTg1rbzgWg/VHo/Os2pbi6dID2bGWPzrW9IeXC+dFEhUnBkeNMTgS3T9AbDx+Fb/su4y/T10zzImTsBhWriSerB2gAoQU2CbLJP/sSM1ImYogh9SVzCHbIj5etRS61QtE66qlOJxNVAwYHDXG4EiUl/yakYUTy/ZdxsqDV1Rh7hx1g0rgmXpl0FnCoifDojV+Ns5cTcTaI9FYdehKnnmRHs726nPRrW4ZNK7go+pIElHhY3DUGIMj0b+LJZYfiMSPOy/mKZ0jeyZ3r18G3euXRaVS7pq2kUyH/HMkn5MV4ZFYGX4lz97b8pl5tkFZ9GwYhGAf1ookKkwMjhpjcCRrJzuP/LjrIlYciETS7QURTva2aiGE/OPfrKIve4/ovmSbxN0Xbqo5sKsPRSE+9d8yTFJ66flGQWo+JIeyiR4dg6PGGBzJWotzrzkche92XMD+S/8udJF9n/s2DsGz9cuyGDQ90rzYRXsi8M/pa4byTLKIplvdQDzfKFhtH0lEBcPgqDEGR7ImcckZ+Gn3JSzcfgHR8dlDi/a2Nqo3qG+TYLWLCIs+U2GW+Fm697KaL5t7i0nZJWhgs3LoVNNfLbAhIuMxOGqMwZGswcUbSZi/7QKW7I0w1OeTAs/9m4SgV6MgLnShIiWr8beeuY7Fey5h/dEYw9aHpTyc0KdxMPqEBfMzSGQkBkeNMTiSJTt0ORYz/zqLP45FG4YMq/l7YEjz8niqbiCc7DnnjIpXTHwqftp1SfV8S23QnH3LO9cKwMBmIWrbQ/Z6E90bg6PGGBzJEu27eBNfbjyjdgLJIfsPD2tRAY9V4nA0mcY8W9mq8rsdF7Hv4i3D8/WCS+CllhXQvoY/F2UR5YPBUWMMjmQp5NfDjrM38NWmM9hx7oZ6Tv7hfbpOIIa3rogqpT20biJRvo5ExqmFWivCr6hAKcr7umFoi/LoUb8sV2MT5cLgqDEGRzJ38mthy+nrmP7nKcMKaRn6k1I6w1tVRIiPm9ZNJDKKDF3Lwq3vd140FJ73cXPEoGbl0L9pCEq4OmrdRCLNMThqjMGRzNmeCzfxyR8nsfv8TUP9xd5hwXixZQUEluCe0WSektIy1UKuef+cN6zGdnGwUwtpZBibC2nImsUzOGqLwZHMdWjvs/Un8dfJ7DmMUtJEVki/1KoC940mi5Gpy8Lqw1GYs/kcjkXF5/njSHrT/b34WSfrE8/g+OhmzJiBTz75BNHR0ahTpw6++uorhIWFGfW1DI5kTs5eS8TnG06p3Tly5jDKtm6vt62EAC/2MJJlT8f4cuNpw0IaRztbtSPNy60rsnedrEo8g+OjWbx4MQYMGIDZs2ejcePGmDZtGpYuXYqTJ0+iVKlSD/x6BkcyBzcS0zDtz9OqhInUxJNF0U/VCcQb7aqgnC/nMJJ1kH8Ct5+9gel/nlZbHObM532uYRBeaV0RZb25LzZZvngGx0cjYbFRo0b4+uuv1eOsrCwEBQVhxIgRGDdunNH/B0Rdu2H4P8DZ3g62ucpApGbokJXr0tvb2ubZ7UCGU9J12SsBhQ1s4OKYdxVgcvq/e7fyPfgexr5HQloGfthxCXM2n0Xi7cLd7aqXwpgOVVE9wNNsfg6+B9+jsN9j6+0eyJwAKS/1a1IOr7appIrbm8vPwffge9g85Hs8THC0v++rVig9PR379u3D+PHjDc/Z2tqiXbt22LFjR75fk5aWpo4c8n+ACPtwI2ydsv9aXf9GyzylS0YvCceaw9GGxyPbVsYb7asYHv9xNAav/rTf8LhyKXdsGN0qz/vWmPhHnsd8D77H/d5D/kacsvYEvt163vC6zO1aMDgMTSv6mM3PwffgexTVe8iq65zQKKSKz4Lt2bsjvfBYebzYqgJqv7fe5H8Ovgffo3IB3sNY3NDzDtevX4dOp0Pp0qXzPC+PZb5jfqZMmaKSes4hvZNEpuTw5Tg8O3tHntAogku65gmNRPSvMiVcUCeohNpS8+u/zqDFx39p3SQizXGo+g5XrlxBmTJlsH37djRt2tTw/NixY7F582bs2rXLqB5HCY8cquZ7aP0eUoIkZx6jPO1sb4shLcpj8GPl4OpobzY/B9+D76HVezg72KrenE/Xn8SZq4nq+VIejni5dSX0qF8G7k4OZvFz8D34HsmFNFTN4JjPULWrqyuWLVuGbt26GZ4fOHAgYmNj8dtvvz3we3BxDGktK0uPZfsu46N1J3AzKV0993TdQIzvXJ3lRogKQBaQLT8QiS82nDLUgaxUyh0TulRH6yp+3HKTzNrD5BYOVd/B0dERDRo0wMaNGw3PyeIYeZy7B5LIlOsx9pi9HWN/OaRCY5XS7lj0YhNM71WPoZGogKRMleyctOnNVpjUtQZKujmqHsjB8/dgwP/txsnoBK2bSFQs2ON4j3I80sM4Z84cVbtRyvEsWbIEJ06cuGvuY37Y40haSEjNwKd/nFRbq2XpATdHO4xqVwWDHisHBzv+jUhUmGQhzcy/zmD+tgtqiFBG/HqFBatyVjkrsInMBYeqC4GU4skpAF63bl18+eWXqkyPMRgcqbj9eSwG7644guj4VPW4a51ATHiCw9JERe3ijSR8vO6EYcWru5M9XmlTUa3CdnbIO8eMyFQxOGqMwZGKy/XENLy38ihW3d71JcTHFf97JhSPVfLVumlEVrfH+/urjuHQ5Tj1uKy3CyZ1ralqpHL+I5k6BkeNMThSUZP/bH/ZH4kPVh9DbHKGmn81tEV5jGpb5a6VdERUfIvSfjsYiY/XnjT0/rep6of3nqqJEB/uxkSmi8FRYwyOVJQibibjneWH8c/p6+pxjQBPTH22NmqV8dK6aUR0uwyW1H2c9885ZOj0qmzK8JYVVAkf/mFHpojBUWMMjlQU5D/VxXsi1HBYUrpO7foii1+kp5GLX4hMz9lriWoqSc4feTJ8PfHJGmhfozSHr8mkMDhqjMGRCtvV+FSM+/UwNp24qh43KueNqc/WQXlfDn8RmTL5J3btkWj1B19U3L/D15OfqoVgn+wtaYm0xuCoMQZHKkyrDl1RK6ZlLqOjnS3e7FgFQ5pXUPMaicg8yK4dX236d/hadqSR0j1DmpeHPUcMSGMMjhpjcKTCcCspHRNXHsXvB6+ox7XKeOLznnULtCk9EZnO8PW7y49gx7kb6nHNQE981L02QstyjjJph8FRYwyO9Ki2nbmONxaH42pCmupZfLVNJYx4vBLnMhJZAPlnd+m+y/hw9XFVSFwGD6Tu4+gOVdQe8kTFjcFRYwyOVFAZuix8vuEUZm8+C/kvs6Kfm+plrBNUQuumEVEhu5aQpuY+rrw9qiCLZz58JhStqvhp3TSyMvEMjtpicKSCuHQjGSMWHcDBiFj1uHdYsFqByfIdRJbtrxNX1TzmyNgU9fjpuoF4r2tNeLs5at00shLxDI7aYnCkh/VbeCQmLD+CxLRMeDrb4+MetdE5NEDrZhFRMdZ+/Gz9KSzYfl7tNe/r7oT/PVMLHWr6a900sgLxDI7aYnCkh/nHYtLKo1i277KhzM60XvVQpoSL1k0jIg3IiMObSw/i9NVE9bib9D4+VRMlXNn7SEWHwVFjDI5kjFMxCRj+wz6cu5akJsePeLyyWgDD0hxE1i01Q4fpG09jzuazqvfRz8MJH3UPRdvqpbVuGlkoBkeNMTjSg6w4EInxvx5GSoYO/p7OmN6rLhpX8NG6WURkQg5cuoUxSw+qPy5Fj/plMbFrDXi5OGjdNLIwDI4aY3Cke0nL1KlVlD/svKQeN6/kq0Kjj7uT1k0jIhPtfZRKC9/8c05VWijt6YSPetRGm6qltG4aWRAGR40xOFJ+Im4m49Wf9uPQ5Tj1+PXHK2FkuyrcAYaIHmjvhZt4a9khnL+e3fvYv0kI3nmiOqsuUKFgcNQYgyPlV25j1OJwVey3hKsDvni+LnsMiOihpKTr8PG6E1iw/YJ6LHVep/eqh1pluOsMPRoGR40xOFIO+c/r601n8NmGU+pxnbJemNG3Psp6u2rdNCIyU1tOXVNzH6WAuIOdDcZ0qIoXW1SALUcvqBhyC5dvEhVhqR0Zms4Jjf2aBGPJ8KYMjUT0SFpW8cMfo1qiQ43SyNDp8dHaE+gzbyeu3C4gTlSUGByJimg+Y49Z27HmcLTqEZBSGh90C4WTPecjEdGjK+nmiDn9G6jfLS4Odth57iY6TduC329vX0hUVBgciQrZ9rPX8dTXW3EiOkHt/vDzsCboFRasdbOIyMLY2Nio3y1rRrZQ02DiUzMx4ucDGLPkoBrxICoKDI5EhTifccG28+j/7W7cSs5A7bJe+H3EY2hYrqTWTSMiC1be1w3LXm6G19pUUpsJ/LL/svrj9XhUvNZNIwvE4EhUCNIzs1RB7/d+PwZdlh7P1CuDJS81RYAXtw4koqLnYGeLNztWVSMcUuvx7LUkdJuxDT/tuqT+qCUqLAyORI8oLjkDg+bvxqI9Eeqv/QlPVMfnPevA2YHzGYmoeMkOVGteb4HWVf2QlpmFd5YfxuuLwpGQmqF108hCMDgSPYJLN5LRfdY2bD97A26Odvh2YCMMa1lBzT0iItKC7ET1fwMbYXznamqDAVkw0/WrrTgSmb35ANGjYHAkKqB9F2/hmZnb1JBQgJczlg5vhjbVWNSbiLQnNR1falVRTZkpU8IFF+SP3JnbsXD7BQ5d0yNhcCQqAPkLvvc3O3EjKR21ynhixauPoUYgi70TkWlpEOKN1a83R7vqpZGuy8KklUfxyo/7OXRNBcbgSPQQ5C/1GX+dUSUvZEFM+xql1V/0pT2dtW4aEVG+Srg64psBDTDxyRqqruzaI9F4+uttOBWToHXTyAwxOBIZKVOXvXL6kz9OqsdDm5fH7H4N4Opor3XTiIjuS+Zdv9C8/O1qD844dz171TULhtPDYnAkMkJKug7Df9hvWDn9frdaePfJGmriORGRuagX7I1VI5qjWUUfJKfr1OjJ+6uOIUOXpXXTyEwwOBI9QGxyOvp9uwt/Ho+Bk70tZvVrgP5NQrRuFhFRgVddf/dCGF5uXVE9/nbrefT9ZheuJqRq3TQyAwyORPdxJTYFz87eoVZQezrb44ehjdGxpr/WzSIieiT2drZ4u1M1Nd3G3ckeuy/cxJNfbsWeCze1bhqZOAZHonuQieNSvuLM1UT4ezqrLb0acftAIrIgnWr5Y+Vrj6FKaXdcTUhD77k7MX/beZbsoXticCTKh/zV/eys7YiOT0WlUu745ZVmqFLaQ+tmEREVugp+7lj+ymN4snYAMrP0mPz7Mby17BDSMnVaN41MEIMj0R02nYhBv3m7EJ+aifrBJbBseHYBXSIiS+XmZI+vetfDu12qqwWAy/ZdRq+5O3E1nvMeKS8GR6JcVh26ghe/26f2eG1brRR+HNpE1UAjIrKGkj1DW1TAgsFhak73gUuxeOrrbTgYEat108iEMDgS3bZkTwRe//mAGqp5um4gZvdvABdHO62bRURUrFpW8cNvrzVX03Rkuk7POTvwW3ik1s0iE2EWwfHChQsYMmQIypcvDxcXF1SsWBGTJk1Cenp6nvMOHTqEFi1awNnZGUFBQZg6depd32vp0qWoVq2aOic0NBRr1qzJ87pMCJ44cSICAgLUe7Vr1w6nT58u8p+RtCWTwcf+cghZeqB3WDA+71kXDnZm8Z8HEVGhK+/rhuWvNMPj1UqpEZiRi8IxZe1x6OSXJFk1s/iX8cSJE8jKysKcOXNw9OhRfPHFF5g9ezbeeecdwznx8fHo0KEDQkJCsG/fPnzyySd47733MHfuXMM527dvR+/evVUIPXDgALp166aOI0eOGM6RsPnll1+q779r1y64ubmhY8eOSE3lPA9LJH8ofL3ptJoMnrMbzP+eqcXC3kRk9TycHfDNgIaGeo9zNp/D0IV7EM99rq2ajd5M19xLMJw1axbOnTunHsv9CRMmIDo6Go6O2XPSxo0bhxUrVqjgKZ5//nkkJSVh1apVhu/TpEkT1K1bVwVFuRSBgYEYM2YM3nzzTfV6XFwcSpcujQULFqBXr15GtU1CrJeXl/paT0/PIvjpqTDI/98frzuJ2ZvPqscj21bGqHaV1TwfIiL6lwxVj1UrrbNQ0c8N3w5shHK+blo3iwrJw+QWs+hxzI/8cCVL/ltTb8eOHWjZsqUhNArpKTx58iRu3bplOEeGnnOTc+R5cf78eRU8c58jF7Jx48aGc/KTlpamLnrug0xbVpYek1YeNYTGCU9UxxvtqzA0EhHl4+m6ZbB0eFNV0/bstSQ8M3Mbi4VbKbMMjmfOnMFXX32Fl156yfCcBD7pGcwt57G8dr9zcr+e++vyOyc/U6ZMUQEz55D5lWTaofHd347gux0XITnxf8+EYljLClo3i4jIpNUuWwIrRzyG2mW9cCs5Q21TyEUz1kfT4ChDydLDc78jZ5g5R2RkJDp16oTnnnsOw4YNgykYP3686gHNOSIiIrRuEt0nNE5YcQQ/7bqkQuOnz9ZBn8bBWjeLiMgslPJwxuIXm6JTTX+k67IXzUz78xR3mrEi9lq+ucwlHDRo0H3PqVDh356gK1euoE2bNmjWrFmeRS/C398fMTExeZ7LeSyv3e+c3K/nPCerqnOfI/Mg78XJyUkdZA6h8TB+3h2hQuNnz9VB9/pltW4WEZFZkTJlM/vWx8frTmDOlnOY9udpXLyRjI96hMLJniXMLJ2mPY5+fn6qNM79jpw5i9LT2Lp1azRo0ADz58+HrW3epjdt2hRbtmxBRsa/q702bNiAqlWrwtvb23DOxo0b83ydnCPPCyn3I+Ex9zkyX1FWV+ecQ+YbGt9Znh0aZcH05z0ZGomICsrW1gbjn6iOKd1DVRWK5Qci0X/ebtxKylsmjyyPWcxxzAmNwcHB+PTTT3Ht2jU15zD3vMM+ffqokCmldqRkz+LFizF9+nSMHj3acM7IkSOxbt06fPbZZ2oIXMr17N27F6+99pp6XYbGR40ahQ8++AArV67E4cOHMWDAALXSWsr2kHmHxkV7ckJjXTxTj6GRiOhRSd3bBYMbwcPJHrsv3FSLZs5dS9S6WWTt5XikFM7gwYPzfS1386UA+Kuvvoo9e/bA19cXI0aMwNtvv31XAfB3331XFRWvXLmyqtv4xBNP5Pl+UlxchsJjY2PRvHlzzJw5E1WqVDG6vSzHY1qhcfyvh7F4b3Zo/OL5ump1IBERFZ5TMQkYPH8PImNTUMLVAXP6NUDjCj5aN4uKILcUanCUQtq1atWCtWNwNA3y0c49PM3QSERUdK4lpGHYd3sRHhELRztb9Tu3S+1/1wuQ6SrWOo4JCQmqdy4sLAx16tR51G9HVGihUXaDYWgkIioefh5OWPRiE3SsWVqtuH7t5/1YsO281s2iQlbg4CgLUQYOHKhWH8u8w8cffxw7d+4s3NYRFdAnf5zEgu0X1P2pz9ZhaCQiKgbODrLiugH6NwmBjGe+9/sxtce1TBsiKyzHI4tRZL7ht99+q7o1e/bsqXZNkW39atSoUXStJHoIsvf0zL+zd4R5v1stPNuAC2GIiIqLrLL+79M14e/lrP6Ilz2uY+JS1R/xjvZmsSaX7sPo/we7du2qStvIApRp06apmoqyewuRKZn3zzl8uv6Uuv9ul+rqr14iIipeUqXk1TaV8MmztVWQXBF+BUMW7kFiWqbWTaPiCo5r165VpW4mT56MLl26wM6ORT7JtPyw8yI+WH1c3R/dvgqGtuA2gkREWnquYRC+HdgQro52+Of0dTw/ZweuJqRq3SwqjuC4detWtRBGCnA3btwYX3/9Na5fv/4o701UaH7Zdxnvrjii7r/cuiJGPF5J6yYRERGA1lVLqUUzPm6OOHolHt1nbsdZ1nq0/ODYpEkTfPPNN4iKisJLL72ERYsWqcLYWVlZavcVCZVEWlh3JBpvLTuo7g9qVg5jO1ZVwyRERGQaapctgV9faYYQH1dcvpWCZ2dtx8GIWK2bRQXwSHUcT548qRbKfP/996pYdvv27dWOK9aOdRyLz46zNzBw/m6kZ2bh+YZBaq9UhkYiItN0PTENLyzYg0OX4+DmaIdvBjZEs4q+WjfL6sUXVx1HWSwjO69cvnwZP//886N8K6KHdiQyThWbldAodcM+fKYWQyMRkQnzdXfCT8OaoFlFHySl6zBo/h6sP/rv9sFk+sxiy0Fzwx7HonfhehKenb0d1xPT0aRCSSwYHKbqhxERkelLzdDh9Z8PYP2xGLXqemqP2ujB0mnWsXMMUXG7Gp+K/v+3S4XGmoGe+GZAQ4ZGIiKzKxReHz3ql4UuS48xSw9iPneZMQsMjmRW4lIyMOD/diPiZoqaZC09jR7ODlo3i4iIHpK9na2q8zj4sXLqsWwT+8WGU2rLWLKQ4KjT6dQuMVxBTVoNbQxbuBcnohPUnqjfv9BY3RIRkXmytbXBxCdrqNq7YvrG0ypAcotCCwmOUvS7d+/euHbtWtG1iCgfmbosvPbTAey+cBMezvb47oUwBPu4at0sIiJ6RLKo8fW2lTH5qZrq8YLtF/Dm0oPI0GVp3TQqjKHqRo0a4fx5zkOg4iPDFu/9fhR/Ho+Bk70tvh3YCNUDuOiIiMiSDGxWDtOer6sWy/x6IBKv/LgfaZk6rZtFjxocR4wYgXfeeQcREREP+6VEBTJnyzn8sPMSpNLO9F71EFa+pNZNIiKiItCtXhnM6dcAjva22HAsBi99v09NUyIzLsdja5udNd3d3fHUU0+hdevWqFevHkJDQ+Ho6FhU7TQrLMdTeFYevKJKNohJXWtg8GPltW4SEREVsa2nr2Pod3uQmpGlaj7OU/td22vdLItVpOV4ZJhaFsi8+eabSElJwZQpUxAWFgYPDw/Url37UdpNlMeuczfw5pLsrQSHNC/P0EhEZCWaV/bFwsFhaneZ7bJD2P/tRkJqhtbNosIqAC6rrMPDw3Ho0CG8+uqrsHbscXx0Z64moPvM7YhPzUTnWv6Y0ae+Wn1HRETWY/+lW7dDYybqBpXAwhfC4OXCEmxa5hbuHFMEGBwfzdWEVBUaL99KQf3gEmp7Khb4JiKyTocvx6lNH2KTM9SmDz8MaQxvN06NK0zcOYbMVnJ6JoYs2KtCYzkfV8wb2IihkYjIioWW9cLPw5rAx80RR6/Eo9fcnbiWkKZ1s6wWgyOZDNl26vWfw3E4Mg4l3RzVrjByS0RE1k1KsC1+qQlKeTjhZEwCnp+7A9FxqVo3yyoxOJLJmLruhKrVKGUYZP/pcr5uWjeJiIhMRKVSHljyUlMEejnj3LUkFR6vxKZo3Syrw+BIJmHJ3ghVr1F8+lwdNAjx1rpJRERkYqRDYfFLTRFU0gUXbySj9zc7ERXH8FicGBzJJMruTFh+WN2XbaeeqhOodZOIiMhEBZV0xaIXc4XHuTs5bF2MGBxJU5duJGP4D/uQodOjS2gARrWtrHWTiIjIxJUp4aIWzJT1dsGFG8noxTmPxYbBkTQTn5qBIQv34FZyBmqX9VJD1KzVSERExijrLT2P/4ZHGbaOiWd4LGoMjqSJTF0WRvx0AKevJqK0p5NaDOPiyLI7RET0cOFReh6lB/L89SQ1bM3wWLQYHEkTH645js2nrsHZwRbzBjRCaU9nrZtERERmO+cxOzyeux0erzI8FhkGRyp2i3ZfwvxtF9T9z3vWVcVdiYiICis89vqG4bGoMDhSsdp38Sb+89sRdX90+yp4IjRA6yYREZGFhEcZts6p8yhzHmULWypcDI5UbGTeyfAf9qsV1J1r+WPE45W0bhIREVmQYJ/sUj0SHs9eS0K/ebtwMyld62ZZFAZHKhZpmTpVdkf2F61S2l2toLax4QpqIiIq/PD484tN1MLLUzGJ6P/tLsSlZGjdLIvB4EjF4r2VR3HgUiw8ne0xt39DuDnZa90kIiKyUCE+bvhxaBP4uDni6JV4DJq/G4lpmVo3yyIwOFKR+3HXRfy8OwLSwfhl73rcg5qIiIpcpVLu+GFoY3i5OKiOi6EL9yAlXad1s8ye2QXHtLQ01K1bVw1zhoeH53nt0KFDaNGiBZydnREUFISpU6fe9fVLly5FtWrV1DmhoaFYs2ZNntf1ej0mTpyIgIAAuLi4oF27djh9+nSR/1yWau+Fm6q3UbzVsSpaVy2ldZOIiMhKVA/wxPdDwuDhZI+d527ipR/2qalTZEXBcezYsQgMvHsv4/j4eHTo0AEhISHYt28fPvnkE7z33nuYO3eu4Zzt27ejd+/eGDJkCA4cOIBu3bqp48iR7FW+QsLml19+idmzZ2PXrl1wc3NDx44dkZrKlVkPS7Z/evnH/YbtBF9uVVHrJhERkZWpXbYE5g9uBBcHO2w5dQ2v/XQAGbosrZtltmz00sVmJtauXYvRo0fjl19+Qc2aNVX4k95HMWvWLEyYMAHR0dFwdHRUz40bNw4rVqzAiRMn1OPnn38eSUlJWLVqleF7NmnSRH0PCYpyKSSUjhkzBm+++aZ6PS4uDqVLl8aCBQvQq1cvo9opIdbLy0t9raenJ6yR/EX3/JydCI+IRTV/D/z6SjO4OnJeIxERaWPbmesYvGAP0jOz8GTtAEzvVQ923Ob2oXOL2fQ4xsTEYNiwYfj+++/h6up61+s7duxAy5YtDaFRSE/hyZMncevWLcM5MvScm5wjz4vz58+r4Jn7HLmQjRs3Npxzr+Fzuei5D2v3warjKjTK3BJZDMPQSEREWnqski/m9GsABzsbrDoUhbd/OYSsLLPpOzMZZhEcpSdw0KBBGD58OBo2bJjvORL4pGcwt5zH8tr9zsn9eu6vy++c/EyZMkUFzJxD5ldas9/CI/H9zotqMcy0XnVVaQQiIiKttalWCl/e7mlctu8yJq08qjIGmUlwlKFkWeRyv0OGmb/66iskJCRg/PjxMEXSLunezTkiIiJgrU7FJGDcL4fV/RFtKqENF8MQEZEJ6RwagM9ULWGoTo5P15/UuklmRdPxQ5lLKD2J91OhQgVs2rRJDRU7OTnleU16H/v27YuFCxfC399fDWfnlvNYXsu5ze+c3K/nPCerqnOfkzOXMj/SrjvbZo2kRpYU+U7J0KF5JV+MbFdF6yYRERHdpVu9MkhO1+Gd5Ycx46+zKOHiiGEtK2jdLLOgaXD08/NTx4PIKucPPvjA8PjKlStqbuLixYvV/EPRtGlTtTgmIyMDDg4O6rkNGzagatWq8Pb2NpyzceNGjBo1yvC95Bx5XpQvX16FRzknJyjKfEVZXf3yyy8X8k9vWaSrX+aLyP6g/p7OmN6rLicdExGRyerTOBixKemYuu4kPlxzHF6uDujZ0LqnmhnDLFYsBAcH53ns7u6ubitWrIiyZcuq+3369MHkyZNVqZ23335bldiZPn06vvjiC8PXjRw5Eq1atcJnn32GLl26YNGiRdi7d6+hZI8MjUuolJBauXJlFST/85//qJXWUraH7m3h9gtYfSgK9rY2mNG3Hnzc2QNLRESmTcrExSZnYO6Wcxj3yyF4OjugU63s0Ucy48UxxpBFKevXr1croxs0aKCGwaWQ94svvmg4p1mzZvjpp59UUKxTpw6WLVumyvXUqlUrT53IESNGqK9r1KgREhMTsW7dOlUwnPK3/9It9deaGP9EdTQIKal1k4iIiB5IOozGd66Gng3LQhZYv/7zAWw/c13rZpk0s6rjaC6sqY7jjcQ0PPnVVkTFpeKJUH/M6FNf/YdIRERkLjJ1Waow+Lqj0XBztMNPw5qgTlAJWIt4S6zjSKZH6l+NWhyuQmMFXzd83KM2QyMREZkdeztbTO9dF49V8kFSug6D5u/GmasJWjfLJDE4UoHN3nIW/5y+DmcHW8zsVx8eztmLkoiIiMyNk70d5vRviDplvXArOQP95u3G5VvJWjfL5DA4UoHsu3gTn60/pe5Pfqomqvlb9pA8ERFZPncneywYHIZKpdwRHZ+K/t/uxvXENK2bZVIYHOmhxSVn4PWfw6HL0qNrnUCWLyAiIovh7eaI74eEoUwJF5y/nqSGraVOMWVjcKSHImupxv5yEJGxKQgu6Yr/PVOL8xqJiMiiBHi54IehjeHj5ogjkfF4+Yd9SM/M0rpZJoHBkR7KDzsv4o+jMWqT+K/71OO8RiIiskjlfd3wf4MawcXBTs3nl00usqRmj5VjcCSjHb0Sh/dXZ9drfLtTNdQuaz2lCoiIyPpISZ5Z/eqrzS2WH4jEx3+cgLVjcCSjJKVlYsTPB1RXfdtqpTCkeXmtm0RERFTkWlcthY961Fb352w+h//beh7WjMGRjDLxt6OGfag/ea4O5zUSEZHVeLZBWbzVsaq6//7qY1h16AqsFYMjPdDyA5fxy/7LsLUBpvWqi5Jujlo3iYiIqFi90roiBjYNgey3N3rxQWw/a51bEzI40n1dupGMd5cfUfdfb1sZTSr4aN0kIiKiYicjbRO71lTb66brsvDSd/tw7Eo8rA2DI913785Riw+o7ZcalfPGiMcra90kIiIizdjZ2uDznnURVr4kEtIyVY1Ha9tdhsGR7mnGX2ex/1IsPJzs1X8o8h8MERGRNXN2sMM3/RuiSml3XE1Iw8D/241bSemwFgyOlK/9l27hy02n1f3/dquJoJKuWjeJiIjIJHi5OmDhC2EI8HLG2WtJePH7vUjN0MEaMDjSXWRrpTcWZ28p+FSdQHSrW0brJhEREZnc7jILXwiDh7M99ly4hbeWWUeBcAZHust/fz+KizeS1T6d73fjloJERET5qVLaA3P6NVAFwn8/eAWfrj8JS8fgSHmsOxKFJXsvQ7LiZz3rwMuFWwoSERHdS7NKvoYC4TP/PotFuy/BkjE4kkF0XCrG/XpY3R/eqiJL7xARERlZIPz1ttmVRyasOIItp67BUjE4kiLzMt5cehCxyRmoVcYTb7SronWTiIiIzMYb7Sqje70yan3AKz/ux/Eoy6zxyOBIysIdF7D1zHU4O9hi2vP14GjPjwYREZGxbGxs1JB1kwol1SLTFxbsQUx8KiwN0wHh7LVEfLT2hLo/oUsNVCrlrnWTiIiIzI6jvS3m9GuIin5uiIpLxeD5e1SItCQMjlZOdoeRIeq0zCy0qOyLfo2DtW4SERGRWdd4XDA4DL7ujjgWFY8RP+1X/9ZaCgZHKzf3n3M4cHt3mI971GbpHSIiokcUVNIV8wY2UtO//jp5DZNWHoVebxk1HhkcrdiJ6Hh8seGUuj/pqZoILOGidZOIiIgsQt2gEmrNgPTH/LjrEr7deh6WgMHRSqVnZmH04oPI0OnRrnpp9KjP3WGIiIgKU6da/pjwRHV1/8M1x7HxeAzMHYOjlfr6rzNq7oW3qwP+1527wxARERWFIc3Lo3dYEGSk+vWfD6jRPnPG4GiFDl2OxYy/zqj7H3QLRSkPZ62bREREZJFsbGzw36droWkFHySl6zBkwV5cT0yDuWJwtDKpGTqMXnJQFSh9snYAutQO0LpJREREFs3Bzhaz+tVHOR9XRMam4MXv9qp/j80Rg6OV+XzDKZy5mghfdye8/3QtrZtDRERkFUq4OuLbQY3g6WyP/ZdiMf7Xw2a50prB0Yrsu3gL3/xzTt3/qHsovN0ctW4SERGR1ajo546ZfRvAztYGyw9EYubfZ2FuGBythHSJj112UE3O7VG/LNrVKK11k4iIiKxO88q+mPxUTXX/kz9OYu3hKJgTBkcr8dWm0zh7LUkNUf/nyezSAERERFT8+jUJwaBm5dT9N5aE4/DlOJgLBkcrcCQyDrM3Zw9Rf9CtpppnQURERNp5t0t1tKzih9SMLAz9bg9i4lNhDhgcLVyGLgtjlx1Sq6ifCPVHp1pcRU1ERKQ1eztbfN2nHiqXckdMfBqGLtyLlHTTX2nN4Gjh5m45pwp9l3B1wOSnuIqaiIjIVHg6O+DbgY1Q0s0RhyPj8JZai2DaK60ZHC3YmasJmP7naXV/4pM14OfhpHWTiIiIKJdgH1fM6lsf9rY2WHUoyuRXWptVcFy9ejUaN24MFxcXeHt7o1u3bnlev3TpErp06QJXV1eUKlUKb731FjIzM/Oc8/fff6N+/fpwcnJCpUqVsGDBgrveZ8aMGShXrhycnZ3V++3evRvmRoamZYg6XZeF1lX98Ew97kVNRERkihpX8MHkp7NXWn+6/iT+PGa6e1qbTXD85Zdf0L9/fwwePBgHDx7Etm3b0KdPH8PrOp1Ohcb09HRs374dCxcuVKFw4sSJhnPOnz+vzmnTpg3Cw8MxatQoDB06FH/88YfhnMWLF2P06NGYNGkS9u/fjzp16qBjx464evUqzMl3Oy6oAqNujnb43zOh3IuaiIjIhPVtHIJ+TYJV2bxRi8NxOiYBpshGb+qD6YDqNZQewMmTJ2PIkCH5nrN27Vo8+eSTuHLlCkqXzq5ROHv2bLz99tu4du0aHB0d1X3ptTxy5Ijh63r16oXY2FisW7dOPZYexkaNGuHrr79Wj7OyshAUFIQRI0Zg3LhxRrU3Pj4eXl5eiIuLg6enJ4pbxM1kdPhiC1IydHi/Wy30bxJS7G0gIiKih5OemYV+3+7C7vM31faEv73aHF6uDihqD5NbzKLHUXr+IiMjYWtri3r16iEgIACdO3fOEwB37NiB0NBQQ2gU0lMoF+Po0aOGc9q1a5fne8s58ryQ3sp9+/blOUfeUx7nnJOftLQ09T65D63I3wGyjZGExrDyJdE3LFizthAREZHxHO1t1XzHMiVccOFGMl77eT8ydVkwJWYRHM+dy65B+N577+Hdd9/FqlWr1BzH1q1b4+bNm+q16OjoPKFR5DyW1+53jgS9lJQUXL9+XQ1553dOzvfIz5QpU1RSzzmkh1Irv+6PxNYz1+Fkb4uPe9SGrS2HqImIiMyFj7sTvhnQEC4Odvjn9HVMWXsCpkTT4ChDvzL37n7HiRMn1HCxmDBhAnr06IEGDRpg/vz56vWlS5dCa+PHj1fduzlHRESEJu24mZSOD1YfU/dHtquM8r5umrSDiIiICq5GoCc+61lH3f9263ks23cZpsJeyzcfM2YMBg0adN9zKlSogKio7H0ca9SoYXheVkXLa7KSWvj7+9+1+jkmJsbwWs5tznO5z5HxfFmpbWdnp478zsn5HvmRtsihtf+tOY5byRmoWtoDw1pU0Lo5REREVEBPhAbg9ccr4ctNZ/DOr4dRqZQ76gaVgFUHRz8/P3U8iPQwSjA7efIkmjdvrp7LyMjAhQsXEBKSvfCjadOm+PDDD9XqZynFIzZs2KBCYU7glHPWrFmT53vLOfK8kAU08l4bN240lPqR3k55/Nprr8GU7Th7w/AXyf+6h8LBzixmIRAREdE9jGpXBSeiE5CQmomQkq4wBZoGR2NJ+Bs+fLgqkSPzByUsfvLJJ+q15557Tt126NBBBUQp2TN16lQ1J1HmQ7766quG3kD5HrJaeuzYsXjhhRewadMmLFmyRK20ziGleAYOHIiGDRsiLCwM06ZNQ1JSkioDZKpSM3SYsPywut+3cTAahHhr3SQiIiJ6RLJOYVqvuqozyFQ6hMwiOAoJivb29ioYykIWKZsjwU8WyQgZYpZFMy+//LLqQXRzc1MB8L///a/he5QvX16FxDfeeAPTp09H2bJlMW/ePLWyOsfzzz+vyvdI/UcJn3Xr1lWleu5cMGNKZv19FueuJ6mdYcZ2qqZ1c4iIiKiQuDqaVlQzizqO5qao6zjKyu9//vlHzf3Ue5TGeztSka7TY0af+uhSO6DQ34+IiIgs18PkFtOKsfRAv/76K0aOHInLl7PnM5buPQXOwaGo7qXDE6H3XsBDRERE9KhMY8CcjA6Nzz77rCE0uoW2V6ExKz0Vf378IpYvX651E4mIiMiCMTiaCRmelp7GnJkFtq5e8G7zgroft+1H6OKvqr235TwiIiKiosDgaCZkTmNOT6PwbjMEdi4eSI85h/g9v6lAKYXH5TwiIiKiosDgaCZyiqDnyLh2AVlpybjxx9eAPuue5xEREREVFi6OMRMBAXlXS8fv/hUJB/+APi3pvucRERERFRb2OJqJFi1aqLqTsj93jtyhUZ6X4uhyHhEREVFRYHA0E1LgXIqWi9zhMfdj2eVGziMiIiIqCgyOZqR79+5YtmwZypQpk+d56YmU5+V1IiIioqLCnWPMfOcYmdMow9PsaSQiIqKC4M4xFk5CYuvWrbVuBhEREVkZDlUTERERkVHY41gEckb/peuXiIiIyJTl5BVjZi8yOBaBhIQEdSvlcYiIiIjMJb/IXMf74eKYIpCVlYUrV67Aw8PjrtI5Wv0lISFWtiQsisU6lojXrGB43QqG161geN0Khtft4Vn6NdPr9So0BgYGwtb2/rMY2eNYBOSiS4kcUyMfdkv8wBclXrOC4XUrGF63guF1Kxhet4fnacHX7EE9jTm4OIaIiIiIjMLgSERERERGYXC0Ak5OTpg0aZK6JePwmhUMr1vB8LoVDK9bwfC6PTxes39xcQwRERERGYU9jkRERERkFAZHIiIiIjIKgyMRERERGYXBkYiIiIiMwuBoprZs2YKuXbuqKu+yO82KFSvyvD5o0CD1fO6jU6dOec65efMm+vbtq4qZlihRAkOGDEFiYiIs1ZQpU9CoUSO1o0+pUqXQrVs3nDx5Ms85qampePXVV+Hj4wN3d3f06NEDMTExec65dOkSunTpAldXV/V93nrrLWRmZsKar1vr1q3v+rwNHz7cqq/brFmzULt2bUPB4KZNm2Lt2rWG1/lZK9h142ftwT766CN1XUaNGmV4jp+3gl03ft7uxuBoppKSklCnTh3MmDHjnudIUIyKijIcP//8c57XJTQePXoUGzZswKpVq1QYffHFF2GpNm/erH5x7ty5U/3MGRkZ6NChg7qWOd544w38/vvvWLp0qTpfto7s3r274XWdTqd+QaSnp2P79u1YuHAhFixYgIkTJ8Kar5sYNmxYns/b1KlTrfq6ye5R8g/Rvn37sHfvXjz++ON4+umn1X9zgp+1gl03wc/ave3Zswdz5sxR4Ts3ft4Kdt0EP293kHI8ZN7k/8bly5fneW7gwIH6p59++p5fc+zYMfV1e/bsMTy3du1avY2NjT4yMlJvDa5evaquwebNm9Xj2NhYvYODg37p0qWGc44fP67O2bFjh3q8Zs0ava2trT46OtpwzqxZs/Senp76tLQ0vTVeN9GqVSv9yJEj7/k1vG7ZvL299fPmzeNnrYDXTfCzdm8JCQn6ypUr6zds2JDnOvHzVrDrJvh5uxt7HC3Y33//rbrNq1atipdffhk3btwwvLZjxw41PN2wYUPDc+3atVP7bO/atQvWIC4uTt2WLFlS3UoPh/SmyXXIUa1aNQQHB6vrJeQ2NDQUpUuXNpzTsWNHxMfH5+kRsabrluPHH3+Er68vatWqhfHjxyM5OdnwmrVfN+mVWLRokeqllaFXftYKdt1y8LOWPxkZkN6v3J8rwc9bwa5bDn7e8rK/4zFZCBmmlmGI8uXL4+zZs3jnnXfQuXNn9SG3s7NDdHS0CpW52dvbqzAgr1m6rKwsNY/lscceU78MhPzcjo6OKlDnJr8Qcq6J3Ob+BZHzes5r1njdRJ8+fRASEqLm3B46dAhvv/22mgf566+/WvV1O3z4sAo8Mr9M5pUtX74cNWrUQHh4OD9rBbhugp+1/EnA3r9/vxpyvRN/txXsugl+3u7G4GihevXqZbgvfw3JvI2KFSuqXsi2bdvC2slfmEeOHMHWrVu1bopFXLfcc2Pl8xYQEKA+Z/JHi3zurJX09ktIlF7aZcuWYeDAgWp+GRXsukl45GftbhERERg5cqSag+zs7Kx1cyzquvHzdjcOVVuJChUqqK72M2fOqMf+/v64evVqnnNkFZistJbXLNlrr72mFgP99ddfaiJ+Dvm5ZYJzbGxsnvNl5WHONZHbO1ci5jy21uuWn8aNG6vb3J83a7xu0stTqVIlNGjQQK1OlwVt06dP52etgNctP/ysZQ9Fy+/z+vXrq5EjOSRof/nll+q+9IDx8/bw102mStypMT9vDI7W4vLly2qOo/y1JGQYSH6JyH84OTZt2qSGInP+w7A0so5Iwo8Me8nPKsP4uck/Ug4ODti4caPhORmSkFILOfOr5FaG0XKHbvlrVcqG5AylWdt1y4/0Foncnzdru275kf++0tLS+Fkr4HXLDz9rUD1g8jPLtcg5ZP66VM7Iuc/P28NfN5nWdadwft64qtqcV4EdOHBAHfJ/4+eff67uX7x4Ub325ptvqtVy58+f1//555/6+vXrq1Vjqamphu/RqVMnfb169fS7du3Sb926Vb3eu3dvvaV6+eWX9V5eXvq///5bHxUVZTiSk5MN5wwfPlwfHBys37Rpk37v3r36pk2bqiNHZmamvlatWvoOHTrow8PD9evWrdP7+fnpx48fr7fW63bmzBn9f//7X3W95PP222+/6StUqKBv2bKlVV+3cePGqZXnck0OHTqkHkvVgvXr16vX+Vl7+OvGz5rx7lwNzM/bw183ft7yx+Bopv766y8VGO88pAyP/IMuH2L58EoJhpCQEP2wYcPylAsQN27cUEHR3d1dlQ4YPHiwCp2WKr/rJcf8+fMN56SkpOhfeeUVVf7D1dVV/8wzz6iQlNuFCxf0nTt31ru4uOh9fX31Y8aM0WdkZOit9bpdunRJ/SItWbKk3snJSV+pUiX9W2+9pY+Li7Pq6/bCCy+o//YcHR3Vf4tt27Y1hEbBz9rDXzd+1goeHPl5e/jrxs9b/mzkf7Tu9SQiIiIi08c5jkRERERkFAZHIiIiIjIKgyMRERERGYXBkYiIiIiMwuBIREREREZhcCQiIiIiozA4EhEREZFRGByJiIiIyCgMjkRERERkFAZHIiIiIjIKgyMRUTH7448/YGNjc99j/fr1+X7t4MGD8e677+b72qBBg9CtW7c8zy1btgzOzs747LPPiuRnISLrYq91A4iIrE3Lli0RFRVleFyrVi288sor6sjh5+d319fpdDqsWrUKq1evNup95s2bh1dffRWzZ89WgZOI6FExOBIRFTMXFxd1iMjISNy4cQMtWrSAv7//fb9u+/btcHBwQKNGjR74HlOnTsWkSZOwaNEiPPPMM4XWdiKybgyOREQaOnDggLqtX7/+A89duXIlunbtqoay7+ftt9/GzJkzVe9k27ZtC62tREQMjkREGtq/fz+CgoLg4+PzwHN/++03fPHFF/c9Z+3ateq8jRs34vHHHy/ElhIRcXEMEZHmwdGY3sbjx4/jypUrD+xBrF27NsqVK6eGqRMTEwuxpUREDI5ERGYRHGWYun379mqF9P2UKVMGf//9t5o72alTJyQkJBRia4nI2jE4EhFp5Pr164iIiDAqOMrw89NPP23U9w0JCcHmzZsRHR3N8EhEhYrBkYhIw95G8aDgePXqVezduxdPPvmk0d9b5k1Kz6N8bceOHREfH//I7SUiYnAkItJwRXXp0qURGBh43/N+//13hIWFwdfX96G+f9myZVV4lJ5NhkciKgw2er1eXyjfiYiIisRTTz2F5s2bY+zYsVo3hYisHHsciYhMnITG3r17a90MIiL2OBIRERGRcdjjSERERERGYXAkIiIiIqMwOBIRERGRURgciYiIiMgoDI5EREREZBQGRyIiIiIyCoMjERERERmFwZGIiIiIjMLgSEREREQwxv8DRKoQoBuM8tAAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAo4AAAHnCAYAAAA2HdzvAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAfXlJREFUeJzt3Qd0VGXeBvAnbSa995DQe+9FKQpSxIKoK1aKuiuKC4IFXMXVb10U3RWsrOuu4K4uKmKlCIJgAem9KZ303ttkMt/5v5MZZkISJkAy7fmdc7lzy8zcXFKeeauHwWAwgIiIiIjoIjwvdgIRERERkWBwJCIiIiKbMDgSERERkU0YHImIiIjIJgyORERERGQTBkciIiIisgmDIxERERHZhMGRiIiIiGzC4EhERERENmFwJCKXMWLECLUQEVHTYHAkIgLw0UcfYdGiRTaf36pVK3h4eJgXX19ftG/fHk888QRyc3PrfM6yZcvQrVs3+Pv7IzExEffddx9SU1MbfJ9NmzZh4sSJiI2NhUajQXR0NG688UasXLmy0V8jEdHl8uBc1UTkKiorK9VaAlZj3XDDDTh48CBOnz5tc3AMCwvDnDlz1HZ5eTl27dqF9957D71798b27dutzv/8889VABw+fDgmTZqEzMxMrFixAq+//nq9paTPPfccXnjhBRVI77zzTrRs2RI5OTlYvXq1CpQffvgh7rrrrkZ/rUREl4rBkYjoEoOjlB5+8803VvulxPHVV1/Fr7/+qgKfyR133IHvvvsOKSkpqnTSMuzWFXQlVN5+++247bbbVGmoj4+P1fFvv/0WOp1OXTcRUXNhVTUR2cWf//xnVcV79OhR/O53v0NwcDAiIiIwc+ZMVXpnqaqqCv/3f/+Htm3bQqvVqtD29NNPo6KiosE2jlIqJ+/xySef4MUXX0SLFi1UaBs5ciSOHz9u9bxVq1bhzJkz5qpneY9LIVXKwtvb22q/p6en+jq8vLys9tdXOvrss88iPDwc//73vy8IjWLMmDEMjUTU7Kx/sxERNTMJjRLSFixYgF9++UVV3ebl5eGDDz4wn/PAAw+o9oFS+iZVw9u2bVPnHzlyRFUBX8xLL72kgtvjjz+OgoICLFy4EHfffbd6HfGnP/1J7U9OTsZrr72m9gUGBl70daXELzs7Wz2WsLtnzx78/e9/x7Bhw9C6dWurc6dOnYrly5dj/vz56tob8ttvv6lAPW3aNAQFBV30OoiImguDIxHZlQSsL7/8Uj1+5JFHVMnj22+/rUJejx49sG/fPhUaJTz+85//VOc9/PDDqpOIVAl///33uOaaaxp8Dwl1e/fuNZfuSdtEKdmUqmmpbr7uuuuQkJCgAus999xj87WvW7cOUVFRVvuuuuqqOjuunDhxQpWWSoiNi4vDH//4x3pfVwKx6N69u83XQkTUHFhVTUR2JWHR0qOPPqrW0gHEcj179myr80ydUqSK+WKktM+ySnjo0KFqffLkycu69oEDB2L9+vVqkbaOUh1+6NAh3HTTTSgrKzOfJ8FYvk5ptyilm7NmzcL7779v9VodO3bEvffeqx4XFhaqNUsbicjRsMSRiOzKsgOJkHaMUq1s6qQi7Q5lu127dhe0JQwNDVXHLyYpKclqW0ochZQwXo7IyEiMGjXKvD1+/HgVAKVKXXpXm0LwU089hXHjxqk2ibJkZGTgwQcfVMFQzi0tLcWpU6fM50upqygqKrqs6yMiutJY4gjghx9+UOOixcfHq0bxX3zxRYPnmxrc117S09Ob7ZqJXJX8LDVmvy1qd0gxaYpBJaTjjen3ipAxHY8dO4ZBgwaZz1myZIkKkDKUzpo1a1Tpo4RjCZGiU6dOan3gwIErfn1ERJeDwRFASUkJevbsibfeeqtRz5M/BmlpaeZF2lwRUeNIRxBL0tu5urra3KtZxi6U7drnSaldfn6+On4lXE4wtSQ9p0VxcbHV6547d84qyEpHGQmTt956q+oxPn36dHOP7A4dOqiSS6niNr0OEZEjYHAEVBXSX/7yF9xyyy2Nep4ERflFb1qkxICIGqf2B7Y33njD/HMprr/+erWuPauL9F42VQ9fCQEBAapn9eX6+uuv1Vo+jJqqxfv06aPGYpSe0iYyLNB//vMfFYolBE+YMMHqdZ5//nk12Ld0CjKF0dodc2qPIUlE1NTYxvEy9OrVS40jJ70yZUw66U1ZHznPcsw5+WMhVVgybt2VKukgciamnwfpbSzhUKp4d+zYgY8//lgNfC29raWTiKylSvfdd99FVlaW+jnbvXu3CmJS3du3b19zZxK9Xq/Wpm2pTRDShtC0z7LtoHRgMe3v2rWreu8ZM2aooCdB0hRe66vmPnv2rLmntwzkLb20pdpZfq6nTJlifm3pSX3zzTdjwIABar+UKMpz//vf/6oPoPI7QGaG2bBhg+rdLeS9pWe59ByXGWmkGlumKZTfGzKQ+ObNm/Gvf/3L6usiIrpU8jtNfjdKs72GCsI4c0wt8gtcxoWr/em/dhW1tHPs16+f+uMnjeCl5EDGhJM/OHWRYCklCERERESOSprVyGQJ9WFwvITgWBeZf1Z6bkqAtKXEUarE5Hxp9WTsP3nllXXogFPLlsHdtJ48GX6//mrvy6CLkCGwX5IhcQBE2PtiiMgm7vp3xZ5e3JyJfekV+Mu3b2LCEWOnu6YgdReJgGo7HhISUu95rKq+QqQK6qeffqr3uAz8K0ttwU0YHH28vGya/cLVBHt5wc/eF0EXZfppCGrCnwEiurLc9e+KPXn7lsBT64UAT+9m+V15seZz7M1xhcisFDIbBBEREdGV5mmohiNgiWPNsBkyBIiJDMQrQTA8PFxVJ8+bNw8pKSnmuXOld6c02JfG9DKVmbRx3Lhxo+rlSERERHSlVNc0KHSUbrQMjgB27txpNdetaWqzyZMnY+nSpWqMRukBaSK9J2W6MwmT/v7+aj5d6eV4sflyiei8P9csRERUv+qarihe1cZRI+yNwRHAiBEjGpxBQsKjpSeffFItRERERE1JX1ND7eUgVdVs40hERETkoPQOVuLI4EhERETk4G0cvRkciYiIiKgh1aaqagZHIiIiIrKpqpptHImIiIjIlqpqljgSERERUYP0NcnR21RnbWcMjkREREQOSm8qcTSwxJGIiIiIbBqOhyWORERERNQADsdDRERERI1q4+jJEkciIiIisqnEkW0ciYiIiMiWzjEscSQiIiKiBlXVJEetXgdHwOBIRERE5IAMBgMqTcGxqgKOwNveF0BE5Ciq4YFKL2/ovLxR6eUDnSyeXqj29ESVrD2Ma72H5wX7ZK232Cfn6OVcT3nsBYOHh3qPmlon4+Oafcb95x8bj6HeYzL1mAzN4SlrQ7WqwpIx3iz3mR/XrK3PrYZPdRV89OcXjV5n3ie9N63fkYjsoar6/O8MbZVjlDgyOBKRQ5FfkhXeGpR5a1HuY1yX+WhRrra1VvvVds0x03nquT5aFfyMizEEVnpLCPQ2ryu8jcdNIVGWKi/+ShQeEixVmJQgqTOGy2rTds2+mm0JnL66SvhWVajFTydr2a6Er+7CffJYW8c+P105AirL4O0g8/ESOQKdqYGjCo6VcAT8LUlEl0VK1oo1fiipWeRxac3atK/Exw8lWot9Pr4o0fhbnO9rPq9M4wtHIXPDeteUwEmJnaxNpXlSwieldzINmKdBX7OuOad2CWDNdkM8agb5VY+tyiXlmHVJpLFE01iaaSrprPbwsCrpPL/ftM/42LRd5eWFKgnSEpy9NVbvZ/DwVPtq728OWl0FAivLVIj015UjsLIU/pWylu0yBFYY98txtc+01pUjqKIEweUlCK4oVmtfB2kTRnSpKk1dqh2ojSODI5GbkxBRpPVHoTYAhb6BNesAFGoDa9ZyzHK/8byimm1ZNxVNlc5YkiUlUqpEy1iKZSqtkn2WJViWpVjy6VxVv5qqYfVV6hev9T6d2md5jrynsdrWGBLdgfxpkip2KX1VpbI1JbGmpdLz/LapBNe47YMKLx9V8lvurVGLsdTXuF1m3m9RGlxTYmwqJa6oKT02lfZWyHk+WuQEhF7216WpqjwfJM2h0rhWIVM9rjlWsz+kvBjhZYVq7S7//+S4KmtKHOV3kqM0H2FwJHKh9nkSAPP8gpHnF4T8mrX5sa/FY7UOUoGwWOt/Rd5fQpiUAgVUGkuDjCVCpebHpv2W+0wlRWpfRRkCdOWqytIUAPmHu3nIHyQJyrIA9mmAX+npXVNCbSyNtiyJVo99zpdOF9eUVhsfm0q6jc8xfqjxN5eaZgfKEnZJ1fUSJCVEhpYVIayssGaxfizHwmu25bGmuqpJ7g+5p8qqmo4xDvR9xeBI5KCkpCbbPwQ5/qHI8Q9BdkCY2s7zrwl+vtbBMN83ENWeXpf8fn6V5TUlL8ZqvvMlNBbbFTUlNeXWpTWyT6t3nF9s5HwkcGnKixBWXnRFPkRJAD1fal67FN2idN2iJL3AN1AtRb6BKngW+AWppTECK0oRUZqPyJKaxfw4D1G19suHJ0cpRSLHrqrWOkg1tWBwJGrGKmEJdxIAjUHQGAiNS6gKhaZjspRcYkmgtPkyloQUqj/C50tLzj8OlT/QNdum4GcsbSJyfp4wIKiyTC0JRVmNfr70pM/3NZbKSwl+rnwwq/mQZizRN31oC77gg5uU4MtyJiz+ou/jqyu3CpdRNY+ji3IQU5yL2GLjWo6x9N3NSxz1jvPBnMGR6AqUDGYGhCEzMNy4mB+HISMwAllSUhgQqv74NLZEUNrbRZbmIaKkABGlsuTXqjqzCIYqJBY61C8YImckH6KkdFCWxpRySsml+YNggHwYNK6zzI+NvwvksXQCK/fxRXJorFoa4inXU5KP2KIcRBfnmANljGXALMpRHwJZgulaSnTGDwxBVeVwFAyOAH744Qe88sor2LVrF9LS0vD5559jwoQJDT5n06ZNmD17Ng4dOoTExEQ888wzmDJlSrNdMzUt+Ywn7aWMQdAYArMsQ2FAODKCjNtSrdUYYSoAGhepvoo0bZfkG/eV5pu3gypL+YeAyElKOUPLi9XSNjfloufLyAKW4fJ8yDT+jpEPnabfMfKBMyNItiMuWoIZV5SD+MIsJBRmGtcFmUgozFKP44qy+MHSyZRU1gRHXRkcBYOj/MeUlKBnz56YNm0aJk6ceNHzT506hfHjx+Ohhx7Chx9+iA0bNuCBBx5AXFwcxowZ0yzXTJcXCqUdU1pQJNKDIpEWFKHWqcGm7UikB0Y0qqpYhhCRT/7RJbmILs5DdHEuokqM62hp21QsATEP4aWFHKeOiFRHsID8dLTMT79oExcpxUyX4BgYrn43qRAZKL+3IlTIlH3SFlNKME+FJ6ilPlHFuSpUmsKkBEtT0GxRkImQipIm+GrpUpWaShx1LHF0KOPGjVOLrZYsWYLWrVvjb3/7m9ru3LkzfvrpJ7z22msMjg4wPVOOJgD5MW3NgbB2QJS1/IK1hbT9k1+0KgyaQqFFOJTHEgpZRURETUHaNsqHT1ku1mRGgqX8vksJjkZqcBRSQqKREhxlfBwcpX7vSc2JLHvjO9X5OtLhLSk/vWZJs3icrgIm2afEMZBV1c5t69atGDVqlNU+CYyzZs2q9zkVFRVqMSksLGzSa3TlUfSzSquQWVyFzBI9skpkbVyySvTILq1C1dg/2/RaUhUcW5StqnaM62zVhkiqc2RfTHEO/HWOMTcoEVFDZPiqlg2UYEpNi3TmkQBpGSxNoVLW0gZTepsfjG2nlroGxI8vy0fEdxmIDfRGbJC3cR3ojfhgH/j7eDbDV+qebRyDWVXt3NLT0xETE2O1T7YlDJaVlcHPz++C5yxYsADPP/98M16l8xbLqxBYEwwzawXDvDJ9rTk16h5/TUoBLwyE2eZtKS3krBJE5C6kRkQ61snSPeNEneeU+miRHBKDM6GxOBsai3MhxrVpkXExzwVE4Fx63aVf4X5eSAj2RkKQDxKCZfFW65hAb3h7sk7mUuSXG4NjaGUpHAWDYzOZN2+e6kxjIiFTOtVg82YgsHGdK2zm4Xg/qGW6amQUVyG9ZpHH50sN9SiuKZZviNbLA1EBXogO8DYugd7m7agAb/TzrkawR/1tfIiI6ELSqrtDzVJbtcGAzLJq/Faqx+4yIE1+hxcZf4+nFelQUFGN3DK9Wg5kWNfUeHnAXCrZoiZQxgf5IDHEB6G+nvBwwL9VjiK31DhMWvQ9twPzJzftmxUXA8OHX/Q0BsdLEBsbi4yMDKt9sh0cHFxnaaPQarVquUCvXkBwcNNcaFkZcKLuT5ZNRV9tQE6Z3vwLJaNYZxUSTZ+eGhKo8US0RRA0hsPzQTFY2/AvGp+2bYF6/h+IiKjxpBJaBg0KKStDWB1/V4or9EgpqkJKoQ4phVVILdIhuVCH1MIqVOgNxmNFVdiRUnbB7/ukEB/jElqzDvFBmJ8XAyWA3DJjL/iYDq2AHi2a9s1sbELH4HgJBg8ejNWrV1vtW79+vdrvLo11jWFQpwJiRsn5T55Sclh1kWwYpPE0t48xlxoGeCEq0PiY7WSIiJxLoNYLHWWJ1F5QUimlZipE1gTL5JpwKX8vpJbpcFaFWqxej4FSyakpcYwK0sBRMDiq0tliHD9+3Gq4nb179yI8PBxJSUmqmjklJQUffPCBOi7D8Lz55pt48skn1RA+GzduxCeffIJVq1bBVRRW6NUnRamCkB/21Jq1BMSii1Qne3tCBUBTOIwJMDWiNrZ1kV8IRETk+jw9PBAZ4K2WXnHWxyqqqlWAPFugw9mCSpzNl7WxlqqhQNky1AetwzRoXbOWba384XExxRV61QRAJIU5Ti0agyOAnTt34pprrjFvm9oiTp48GUuXLlWDgp89e9Z8XIbikZD42GOPYfHixWjRogXee+89pxuKp0jCoSkU1lQtyHZakfGHtiHSLkVCoLFHnTEQmoJihJ8XvNgQmoiIGiBhr024Ri1AgHWgLKqqCZKVxmCZfz5QHsqsUIuJ/LmJD/I2hknz4qP+Fjlz6eTZAmMHzih/LwRoHSeuOc6V2NGIESPU+H/1kfBY13P27NkDR2dqd5JWKyCm2VByGOHvpX4YpRGzrOOCfBBXM/yCH6uTiYioqQJlmEYtloGyUm9AcoEOp/MrcTKvEqfydDiVV4nCimokF1ap5ccz53sfS3v4VjUlk23DNWgXrlG9vJ2lYON0vjE4tgjxgSNhcHRRG49mYPbH+5Bf1vCQMzJ8ggqHwT5WIVFKDn1dsOifiIick8bLw1xCeW3NPin0kZ7cphCplnxpQ6lTgXJ/erlaTHy9PVQgbRdhDJKOHCYPZhivu3NUHR1r7YjB0UWF+PmYQ6M5HNaUGMYHn3/McEhERM5KqqIj/L3V0i/Bz6q6W6p6jWFShxO5lWoprzJc0HbSMky2lzAZoVV/M+0ZJvXVBuyrCbzdY2yb6ay5MDi6qC5xIfj8D/1RlZ/OamUiInK76u72EVq1WIYxKYk8nluJ33IqbQ6T9iiZ3J1apjrGhGg9WeJIzcNP44VOsUE4UZJp70shIiKyOwl9SaEatVzb5nyYTK4Jk8dtDJNtVamkMUy2aIIwKdXvyw8WqMcjWgc43Kw7DI5ERETkliT0tQyVIX00GHkJYVJb0+7SVCrZNkKDxMsMkx8fLMCx7Er12rd2aaIJQi4DgyMRERHRRcKkqZr7eE2glJ7dEiaPZFWoxUQCnwwJJKWSbcJ8VOdTmb/7YtMrZhZX4X8H8rH+RInafrBfGML9HS+mOd4VERERETlBNXdqURWO51SYA+XJ3EqUVRlwNLtCLZb8fDwQH+iDUD9PNZC5zJKmrwZKdDKckA5naobfEff2DMWYdoFwRAyORERERJcQJhNDfNRyTZvzUyzKbDjHcytUqaT07E4t1CGzRI8ynQEn8iqBvLpfT8oiu8docXfPUHSNdqye1JYYHImIiIiu0BSLiaYw2RpWg5enFxlnv5HxJYsqqlGqq4aPl4eq2pbhf2QYIJmL29ExOBIRERE18eDlSTVV3c6OA/wRERERkU0YHImIiIjIJgyORERERGQTBkciIiIicp7OMTqdDunp6SgtLUVUVBTCw8PtfUlERERE5CgljkVFRXjnnXcwfPhwBAcHo1WrVujcubMKji1btsSDDz6IHTt22OvyiIiIiMgRguPf//53FRTff/99jBo1Cl988QX27t2LX3/9FVu3bsVzzz2HqqoqjB49GmPHjsVvv/1mj8skIiIiIntXVUtJ4g8//ICuXbvWeXzAgAGYNm0alixZosLljz/+iPbt2zf7dRIRERGRnYPj//73P5vO02q1eOihh5r8eoiIiIjICXpVS8ni0qVLzdtnzpzBmjVrUFBQYNfrIiIiIiIHC46rV69Gp06d1OP8/Hz07dsXEyZMQJcuXXDs2DF7Xx4REREROUpwlJLFhIQE9fizzz5DbGwsCgsLcccdd2DevHn2vjwiIiIicpTgmJiYiFOnTqnHn376KaZMmWJu2/jzzz8323W89dZbqqe3r68vBg4ciO3bt9d7rlSte3h4WC3yPCIiIiJXZvfgKEHxj3/8I5599lls2LBBVVOL6upqFBcXN8s1fPzxx5g9e7YaBmj37t3o2bMnxowZg8zMzHqfI2NPpqWlmRdpm0lERETkyuw+c4xURxsMBqxbtw4vvfQS2rVrZx6yJykpqdnGlZQBx6dOnaq2ZRigVatW4d///jfmzp1b53OklFGq1YmIiIjchd1LHCWA/elPf8LmzZsxZ84c836ZgvCuu+5q8vevrKzErl271EDkJp6enmpbBiOvj5SGygw3UtV+880349ChQw2+T0VFhWq7abkQERERORO7lzjW54knnmiW98nOzoZer0dMTIzVftk+evRonc/p2LGjKo3s0aOH6tzz6quvYsiQISo8tmjRos7nLFiwAM8//3yTfA1ERERELlviePbs2Uadn5KSAkcyePBg3HfffejVq5eaa3vlypVqju1//OMfDVbJS8g0LefOnWvWayYiIiJyyuDYv39//OEPf1DtGOsj4eqf//wnunXrpobpaSqRkZHw8vJCRkaG1X7ZtrUNo4+PD3r37o3jx4/Xe470FJcONZYLERERkTOxS1X14cOH8eKLL+K6665Tw9jIoN/x8fHqcV5enjou1b59+vTBwoULcf311zfZtWg0GvX+tXt0y/aMGTNseg2p6j5w4ECTXicRERGRW5Y4RkREqJ7MMozNm2++ifbt26u2hr/99ps6fvfdd6sOK9I5pTnCmAzFI6Wby5Ytw5EjRzB9+nSUlJSYe1lLtbTlYOQvvPCC6gV+8uRJNXzPPffco4bjeeCBB5r8WomIiIjcsnOMn58fOnTooEr6vL3tdykyS01WVhbmz5+venNL28W1a9eaO8xIm0zpaW0ipaIyfI+cGxYWpkost2zZoqZJJCIiInJVHgYZRNGOJJBJdbHMVy0Db1su0v7QVclwPCEhIaotZ1O1dywrK8OJEyfgbtq2bas+lBAR0ZXlrn9X3OHvWqGNucTuw/HIQNtSFSwDf+t0OjWd38GDB80DbJtCpAx9c+edd9r7comIiIjclt2D42OPPYb33ntPDaJtItXE0jFFqoNl2r+dO3eqQMngSEREROTGwVE6lUhpoqWxY8eq3tSffPIJli9fbrdrIyIiIiIHmnJQBtP+4IMPLtgv4yKuWbPGLtdERERERA5Y4vj2229j0KBBSE5OxqxZs9C5c2c1LuJbb72F0NBQe18eERERETlKcJTe1L/88otq09i9e3fVw1qCo8zGIm0fiYiIiMgx2D04msLjd999p8ZL3Lt3rxqiR8ZGjIuLs/elEREREZEjBUeTpKQktRARERGR47F75xgiIiIicg4MjkRERERkEwZHIiIiIrIJgyMRERER2YTBkYiIiIhswuBIRERERDZhcCQiIiIimzA4EhEREZFNGByJiIiIyCYMjkRERERkEwZHIiIiIrIJgyMRERER2YTBkYiIiIhswuBIRERERDZhcKzx1ltvoVWrVvD19cXAgQOxffv2Bs//9NNP0alTJ3V+9+7dsXr16ma7ViIiIiJ7YHAE8PHHH2P27Nl47rnnsHv3bvTs2RNjxoxBZmZmnedv2bIFd955J+6//37s2bMHEyZMUMvBgweb/dqJiIiImouHwWAwwM1JCWP//v3x5ptvqu3q6mokJibi0Ucfxdy5cy84/4477kBJSQm++eYb875BgwahV69eWLJkiU3vWVhYiJCQEBQUFCA4OBhNoaysDCdOnIC7adu2Lfz8/Ox9GURELsdd/664w9+1QhtziTfcXGVlJXbt2oV58+aZ93l6emLUqFHYunVrnc+R/VJCaUlKKL/44ot636eiokItlv9Byt69QGAgmoSHB+DjA7dz9CjAz0NERFeeu/5dcYe/a8XFNp3m9sExOzsber0eMTExVvtl+6j8R9UhPT29zvNlf30WLFiA559//sIDw4ejyXTuDHzyCdzO3XcDR47Y+yqIiFyPu/5dsbe7HefvGts4NhMp0ZTiX9Ny7tw5e18SERERUaO4fYljZGQkvLy8kJGRYbVftmNjY+t8juxvzPlCq9WqhYiIiMhZuX2Jo0ajQd++fbFhwwbzPukcI9uDBw+u8zmy3/J8sX79+nrPJyIiInIFbl/iKKSjy+TJk9GvXz8MGDAAixYtUr2mp06dqo7fd999SEhIUO0UxcyZMzF8+HD87W9/w/jx47F8+XLs3LkT7777rp2/EiIiIqKmw+BYM7xOVlYW5s+frzq4yLA6a9euNXeAOXv2rOppbTJkyBB89NFHeOaZZ/D000+jffv2qkd1t27d7PhVEBERETUtBscaM2bMUEtdNm3adMG+22+/XS1ERERE7sLt2zgSERERkW0YHImIiIjIJgyORERERGQTBkcXNubMGXTv3l0tMgvOjh071GPzdIdOSr4Gy+GQTF+jdFoiIiLHJaOV8O+Sc2NwdHG33norvv/+e7Rr1071FpfHQUFBNj//T3/6E/74xz/CkcnX9NRTT9n7MoiIyAb8u+Tc2Kvaxfn5+anZcUwsHzcnnU4HHx+fJnlt+ZoCAwOb5LWJiOjK4t8l58YSRzdSu0pAxp6UYvSff/4ZN910kxr8/KGHHlJjWoq3334bX331lfrkZCp2l9cQMt7lnDlz1POvuuoqPProo0hJSbngE6EMin7ttdfixhtvxOLFi3HXXXfV+enznXfeUY8PHjyIBx98EEOHDlUz8UyZMgWHDx9upjtERETNiX+XnA+Do5srKyvD0qVL1aw4sk5LS8Orr76qjskPx5gxY9QPoPyQyiLVCvIp7Q9/+AMCAgLUc/7zn//A399f/XDLMZNt27bh9OnT6of0zTffVLPsHDhwAOfOnTOfc/z4cfz666/qmJAZe+SXxbJly/Dhhx+iZcuWePjhh9V+IiJyffy75NhYVe3mqqqq1Iw5iYmJavvOO+/EkiVL1GP5odNqtaisrLSqSvj666/VfN7PP/88PDw81L6//OUv6lOefPIzNQaW6gg5x7IqoGPHjli1apX6YRbyuEePHkhKSlLbAwcOtLq+5557Tr2eTOko0zwSEZFr498lx8bg6Obkh8j0wymioqKQm5vb4HPkk5h8Oqv9w1RRUWH1qU2mYqzdfkQ+wX3++efqB9RgMGDNmjW49957zcezs7PVp0D5QZfr0Ov1KC8vV584iYjI9fHvkmNjcHRz3t4XfgvID05DSktL0aVLF7z00ksXHAsLC7P64a9t3LhxeO2111T7EPmBljYpY8eONR+X+b/z8/NVb7T4+HhoNBrcc889VlUNRETkuvh3ybExOFKD5JOZFP9b6ty5M9auXYvw8PBG9xqLjY1Fv379VFWA/IAOGjQIERER5uN79uxRP6TDhg1T2/IDnJeXd4W+GiIicnb8u2Rf7BxDDUpISFBVAKdOnVI/KPIJS4r15ROc9E7btWsXkpOTVRG+NGSWH6iLkefLD/i6devMjY9NpNGxtFU5efIk9u/frz7h+fr6NuFXSEREzoR/l+yLwZEaJEMStGrVCpMmTVKftvbu3auK+qXXWlxcHB577DHcfPPNqiGzfFKz5ZPeddddp4r9pY3IyJEjrY5Jo2UZluF3v/sdnn76adx9993qEyQREZHg3yX78jBcrOEANQn5JgwJCUEBgOAmeo9h/v5oOXGiy45eb0nG/lq4cCG2bNmCtr/7HfyOHLH3JRERuZyyzp1x4pNPLmvKwU6dOrnd36XL1Rx/12QkzRAABQUFCA6uP5mwxNHFLV++XA2gKsX6rkq+vv/7v/+z92UQEZEN+HfJubFzjAv7d3w8fl28WD2W4ntXtWLFCrX29OTnICIiRya9nqX6WPDvknNicHRhCT4+KK8ZwNSVmQZpJSIixxYTEwN3kOTCf5dcLwoTERERUZNgcCQiIiIimzA4EhEREZFNGByJiIiIyCZuHxxlwnIZzFPGLAoNDcX999+P4uLiBp8zYsQIeHh4WC0yOToRERGRK3P7XtUSGtPS0rB+/Xo1bZEMTvr73/8eH330UYPPe/DBB/HCCy+Yt/39/ZvhaomIiIjsx62D45EjR9TclDKfpUxwLt544w1cf/31ePXVVxEfH1/vcyUoysToRERERO7CrYPj1q1bVfW0KTSKUaNGqQE7t23bhltuuaXe53744Yf473//q8LjjTfeiGeffbbBUkcZ8NQ06ClqpvQxTfHTVMr0+otWu7uiQr0eOntfBBGRC3LXvyvu8HetsGZ9sZmo3To4pqenIzo62mqft7e3mrxcjtXnrrvuQsuWLVWJ5P79+9Wcm8eOHcPKlSvrfc6CBQvUROm1JaIJyXROgwc35TsQEZE74d8Vl1dUVISQEJm12o2C49y5c/Hyyy9ftJr6UkkbSJPu3buraZNGjhyJEydOoG3btnU+Z968eZg9e7Z5u7q6WnXMiYiIUJ1r7KmwsBCJiYk4d+5cgxObkxHvV+PxnjUe71nj8H41Hu9Z47j6/TIYDCo0NtRMz2WD45w5czBlypQGz2nTpo2qZs7MzLTaX1VVpQJdY9ovDhw4UK2PHz9eb3DUarVqsSTV5I5EfhBc8YehqfB+NR7vWePxnjUO71fj8Z41TrAL36+GShpdOjhGRUWp5WIGDx6M/Px87Nq1C3379lX7Nm7cqEoDTWHQFnv37nX5CduJiIiI3Hocx86dO2Ps2LFqaJ3t27fj559/xowZMzBp0iRzUW1KSgo6deqkjgupjv6///s/FTZPnz6Nr776Cvfddx+GDRuGHj162PkrIiIiImo6bh0cTb2jJRhKG0UZhufqq6/Gu+++az4uYztKx5fS0lK1rdFo8N1332H06NHqeVItfuutt+Lrr7+Gs5Iq9Oeee+6CqnSqG+9X4/GeNR7vWePwfjUe71nj8H4ZeRgu1u+amoRUh6empiIoKMjunWOIiIjIvRksOsfIsIRu1cbRGUholN5ZRERERI5Ceo23aNGi3uMMjnYiJY3CVbv1ExER0aXT6/XYsmWLGldaRnoZMmQIvLy80NTDDZnySX0YHO3EVD3tyt36iYiIqPFkQpGZM2ciOTnZvE9KARcvXoyJEyeiKV2s+Zzbd44hIiIicqTQeNttt1mFRtMoL7K/oVnqmgODIxEREZGDVE/PnDmzzvmiTftmzZqlzrMXVlUTERERNYOKKj2Ky6tQWqlHcUUVSiqq1Nq0ve/gURQmDkFoGz94aPzgWbN4aHxRdmoPinZ8rvpG/PjjjxgxYoRdvgYGRyIiIqKLqK42oLiyCoVlOhSVW6zLLbYrrPcXllehqMy4lu3KquqLvk/YsPvq3K8vyTc/TktLg70wOF6Gt956C6+88orq8dSzZ0+88cYbGDBggL0vi4iIiBoIgBLs8ssqkVeqQ15pJQpq1rJdUGqxv8y4zi/VqRJBwxUa+drXxxOBWm8EyKLxVo/9tV4oLcjFhm9Xw1BZhurKMhgqy1FdWaq2dXmp5ufbc4pjBsdL9PHHH2P27NlYsmSJmtd60aJFGDNmjJplJjo62t6XR0RE5BbKdXpkF1cgt6QSOcWV6nGOemxcS+jLrwl/+WXGx9WXEQA1Xp4I9vNGsK8Pgny9EexXszZtW+33QbCvt3HtZ1wHaLzg7VV3FxNpu9jqbw+qjjB1tXOUHs/Su3ro0KGwF84cc4kkLPbv3x9vvvmmeSYYGf/o0Ucfxdy5c20aLykkJARpWTnm4Xh8vb3g6elh9cNQbfHf4+3pCY33+W+2Kn01KvXni7094AE/jfUYT6WVVVbbfA++B9+D78H34Htcynv4eAA///yTqiaVEq8Bg4YAFjOMXKmvQ65bQmB2cSXSCsqQU1KBnGIdcksqkFci4a+yJhhWIruoHKW6i1f/1sVf44Uwf40KeaH+Pgjx90Gorw/CA7SICNQg1F+DMH9j+JPrDvH1QaCvF/x8vJv0/+PLL7/CPXffDUNVhVV49NT4qvV///shbr75piv+f27KJQUFBQ0OE8jgeAkqKyvh7++PFStWYMKECeb9kydPRn5+Pr788ssLnlNRUaGW2gNtJs76BJ5af7Vv3WPD0CHm/MCbD3+4C6sPpJu3Z45sj8eu62DeXrU/DY98tNu83T46EOtnD7d631ZzV1lt8z34HnwPvgffg+9xKe+h/+Z5JB/aYd5OmvQ8PFr2tfk92kUH4v0p/ZFZVIGsonK1nv/lIav3CPXzQUG57pKrhLXenhjYJgKRARoV/iQEvrz2qNU5/3twIPq0DIPW28th/z9i/KqR+t7DVkPytHzqmyv6HrW/DluDI6uqL0F2drYqTo6JibHaL9tHj1p/g5osWLAAzz//fDNdIRER0ZWVkZFhtV1WVgZjsYdRan4Zvt6XqgJhZlE59pw535lDHM8sxtCF3zf4HlKVLKQgTUoDVS/kivNDzwxuE44beyYgPECDyEANDqQU4PmvD5uPJ4X744Np1n0NagfHiECtOTQ6quCgYGw5fVr1njaV8E5ZWwJHwBLHS5xnOiEhQU0FNHjwYPP+J598Eps3b8a2bdtsLnFkVTXfg+/B9+B78D0c9T1KK3ToPXg4sot18AoIhVdQBLyCIuEdFAmvoCh4y3ZgGBrTPjAqSIvoYC2ig7QqHMpa9kUFahEf5ofYYF8V7rw8PZzqXjn7e7Cq2sGqqmuz9T+IiIioKUiQyCiqQHJuKVLyy5BWUI70gnK1lraF8ljaEtpC8klCmD9ign1VEIwO8jWHQ8vHIX4+F53SjuyDVdVNSKPRoG/fvtiwYYM5OErnGNmeMWOGvS+PiIhIjRko4S85rxTJ+WVIzitDSp6szwdFvQ3di6t1FdAXZaulqigH+sIsVKntnJp1Nv7z3hLcddf4Zvm6yL4YHC+RDMUjJYz9+vVTYzfKcDwlJSWYOnWqvS+NiIjcJBiqUKjCYBlS8kvN4VCCYXph+UU7mfh4eSAuxA8JoX6ID/VDXIgvYkN8ER/qi9hgP5w8uAs3jrnhotcSH2+/cQWpeTE4XqI77rgDWVlZmD9/vhoAvFevXli7du0FHWaIiIgulQxAfTanFGdyS3AmpxTnckvV+mxuKVILyi4aDKWXcUKYMRi2CPNHizBZn9+WtoXSlrA+HWOGqXEDHXlcQWpebONoJ2zjSEREMouJlAwaw2CJCoSmYChrCY4N8fPxQmK4MQQaw6CfCoqmbel5fLltCleuXInbbrtNPbaMDKbXlfb+EydOvKz3IPtjG0ciIiIHIGFLwuGprBKcyikxrrONj5Nzy6x6utYlMlCLlhH+aBnuj8Rwf+PjCH8khQdckWB4MRIKJRzOnDnTalxBKWmUZloMje6FJY52whJHIiLXIlPZncy2CIbZJWr7dHYJynTnxyKszdvTQ5UUJkUEICncDy3DA5BUEw4Tw/zVfMaOQMYvthxXUKqnvbwcezxEsh1LHImIiK4wGSvvdE4JTtaEQ+O6WD3OK62/WlnaEcrg1K0jA8xLq4gAFQ6lQ0p9cxc7EgmJI0aMsPdlkJ0xOBIREdVSXFGlZjo5vxSptbQ9bGgEGwmBluGwTZSsA1WJoo8ThEOii2FwJCIit5VbUonfMopwPMsyJBarMQ7rE+zrjTZRgWhjEQxVCWKkP/w1/LNKro3f4URE5PKyiipwLL0Iv5pCYkaxWktwrI8MVdMuKhDtYwLRLjpQPW4XE6imxuPsJ+SuGByJiMhllFRUqXAoIfFoTVCUxw1NnSfVyBIM20s4NC1RQQjx92nWaydyBgyORETkdHT6atVbWcKhKSQeyyjEudyyOs+XAkLpjCLhUEoQ20cHqYAoVc2sXiayHX9aiIjIYcmIcZlFFTicWlgTEo1r6c1c3/iHUsXcKTYIHWOC0CE2SD2WoOin4dAxRJeLwZGIiByCvtqghrY5lFqoguLhNOO6vmrmQK03OsQEomNNSOwYG6wehwdomv3aidwFgyMREdmlLaKUHJrCoaylNLFcV13nGIhtowLQqSYYSglih5gg1TaRnVSImheDIxERNanMonKrUsQjqYVqur265i3z13ihc1wwusYHo0tcMLrEB6uQ6OvDamYiR8DgSEREV3TYm4MpBTiQUoD9yQXqsczTXJeYYK05HHaJC1FrmY/Z05OliESOisGRiIguSXZxhQqIB5MLsF/WKQV1DpwtOVAGyO4aH2IsSYwPVqWKkYFau1w3EV06BkciIrooGShbQuKB5PyadQFS6wiJ0uSwbVQguieEGJcWIapUMUDLPzdEroA/yUREZKW0skoFw33J+dh7Lh/7zhUgJb+szpAoJYk9EkLQLSEEPVqEqtJE6e1MRK6JP91ERG6sutqgpt7bezYfe84Zg6LMtiJD49QmczMbA6IxKEq1c5AvZ1chcicMjkREbiSzsFyFQ9MiHViKK6rq7LjSKzEUvRLD0DPRGBSDGRKJ3B6DIxGRiyrX6VUw3HsuzxgUz+bX2S5RhsCR9oi9kkLRuyYsxob42uWaicixMTgSEbmIjMJy7DqTh52n87DrbB4OpRSgqlaVs/RwlnERpTSxpwqJoWpbBtkmIroYBkciIidUpa9WM6/sPptnDot1dWCJDtKid5KxFFFCovRyZucVIrpU/O1BROQECst12HM2X4XEXWdyVbVzSaXe6hwpNJTxEfu2DDMvCaGclo+IrhwGRyIiB2MwGJCcV4Ydp3Ox80wedp/Jw7GMogum6AvSeqO3BMSkMPRrJZ1YQlmaSERNir9hiIgcICieyCrB9lO52H4qR63r6sTSMsJfhcS+rYylie2j2TaRiJoXgyMRUTOTMRKPpBXWBMVcVbKYU1JpdY63p4caAmdA63D0SQpDn5ahiA5iT2cisi9POIkXX3wRQ4YMgb+/P0JDQ+s85+zZsxg/frw6Jzo6Gk888QSqqqzHJ9u0aRP69OkDrVaLdu3aYenSpRe8zltvvYVWrVrB19cXAwcOxPbt262Ol5eX45FHHkFERAQCAwNx6623IiMj4wp/xUTkKiqrqlXbxHc2ncDU97ej1/PrcMMbP+GFbw5j7aF0FRq13p4Y3CYCM0e2x4cPDMT+P4/GF49chaev74yx3WIZGonIIThNiWNlZSVuv/12DB48GP/6178uOK7X61VojI2NxZYtW5CWlob77rsPPj4++Otf/6rOOXXqlDrnoYcewocffogNGzbggQceQFxcHMaMGaPO+fjjjzF79mwsWbJEhcZFixapY8eOHVNhVDz22GNYtWoVPv30U4SEhGDGjBmYOHEifv7552a+K0TkqOMnSm/nbSeNJYp7zuWhXFdtdY60RZR2iVKiOLB1uCpd1Hp72e2aiYhs4WGQxjVOREoIZ82ahfz8fKv9a9aswQ033IDU1FTExMSofRL+nnrqKWRlZUGj0ajHEvgOHjxoft6kSZPUa61du1ZtS1js378/3nzzTbVdXV2NxMREPProo5g7dy4KCgoQFRWFjz76CLfddps65+jRo+jcuTO2bt2KQYMG2fR1FBYWqtAprxccHHzF7g8R2adEcX9yPracyMHWEzlqDEXZZyk8QIP+KihGqKAovZ/ZPpGIHIWtucRpShwvRkJb9+7dzaFRSEnh9OnTcejQIfTu3VudM2rUKKvnyTkSRE2lmrt27cK8efPMxz09PdVz5LlCjut0OqvX6dSpE5KSkhoMjhUVFWqx/A8iIudto3gwpQBbT+aosLjjVC7KdPoLxk8c1CYCA9sYSxTbRgVyWBwicnouExzT09OtQqMwbcuxhs6REFdWVoa8vDxV5V3XOVKqaHoNKb2s3c5SzjG9T10WLFiA559//jK/SiKyh+pqgxpsW4Li1hPZ2HYqF0XlVReUKEobxUFtIzCkbQTaRAYwKBKRy7FrcJSq35dffrnBc44cOaJK9JydlGJK20kTCatSBU5Ejjo8TrGqdpYSxV9O5iCvVGd1TpCvtypRlLA4pF0EOkQHwZNVz0Tk4uwaHOfMmYMpU6Y0eE6bNm1sei3pFFO797Opp7McM61r936WbanL9/Pzg5eXl1rqOsfyNaRKW9pFWpY6Wp5TF+nFLQsROaasogr8fDwbP/6WrdbphdbjKPprvFRHFhUU20aiSzzbKBKR+7FrcJROJrJcCdLbWobsyczMNPd+Xr9+vQqFXbp0MZ+zevVqq+fJObJfSBV03759VW/rCRMmmDvHyLb0nBZyXHpqyz4ZhkdIj2sZCsj0OkTkHD2fpcfzT8ez8cOvWaoq2pIMjyO9niUoDm4biR4tQuDj5TQjmBERuXcbRwlmubm5ai3tEPfu3av2y1iMMpbi6NGjVUC89957sXDhQtXe8JlnnlHjLZpK+mQYHukt/eSTT2LatGnYuHEjPvnkE9XT2kSqkydPnox+/fphwIABajiekpISTJ06VR2XHkf333+/Oi88PFwFU+lxLaHR1h7VRGSfdoqH0wpVieJPx7Ow4/SFPZ+7xgfj6vaRGNouSoVGXx8Oj0NE5JTBcf78+Vi2bJl5W3pJi++//x4jRoxQVczffPON6kUtIS4gIEAFwBdeeMH8nNatW6uQKOMwLl68GC1atMB7771nHsNR3HHHHWr4Hnk/CZ+9evVSQ/VYdph57bXXVG9rKXGUntLy/LfffrvZ7gUR2SYlvww//ZalwqK0VcytNTtLXIgvhraPxNXto3BV2whEBLI5CRGRS43j6Co4jiPRlVdWqccvp3Kw+VgWfvgtCyezSqyOB2i8MLhtBK5uZwyLbaPY85mIyC3HcSQi9yOfe09ll2DTsSxs+jUL207moMKi+ln6rvRKDFUhUUoW5THbKRIRXToGRyJyKqWVVWqYHAmLm3/NwtncUqvj8SG+GN4xGsM7RKnSxRA/H7tdKxGRq2FwJCKnGFPRFBRl8G3LTi0+Xh5qmBwJiiM6RqN9NGdoISJqKgyORORwSiqqVGeWTccyVWCUTi6WEkL9MKKjMSjKLC0BWv4qIyJqDo3+bZuTk4OIiAj1+Ny5c/jnP/+ppuu76aabMHTo0Ka4RiJyA8l5pdhwJBMbjmbilxM5qNSfL1XUeHmqOZ9NpYrs1EJE5ODB8cCBA7jxxhtVWGzfvj2WL1+OsWPHqjEOZWgaGaJmxYoV5oGziYgaoq82YO+5PGNYPJKJYxnWA3AnhfvXlCpGqan9/DUsVSQicprheMaNGwdvb281v/R//vMfNWaijF8oJY5CBsHetWsXfvnll6a+ZpfA4XjIHRWV6/DDr9nYcDRDVUFbjqsoPaD7tQrHyE7RGNk5hqWKREQOmEtsDo6RkZFqppUePXqguLhYveiOHTvUFHzi6NGjauYUmcOZLo7BkdzFmZySmiroDDXFn05//ldOsK+3qnoe2dnYCzrUX2PXayUicleFV3ocR5nuLzY2Vj2WKf5kZpawsDDzcXlcVGRd1URE7lkFvftsHr47nKHaKx7PLLY63iYqwFyq2LdlGMdVJCJyIo1qNFS72ojVSEQkynV6bDmRjW8PZuC7IxnIsaiC9vb0QH+pgu5sDIutIwPseq1ERNRMwXHKlCnQao1zuZaXl+Ohhx5SJY9C5mwmIvdRUKbD90czse5wumqvWFqpt6qCvramVHFYhygOwk1E5G7BcfLkyVbb99xzzwXn3HfffVfmqojIIaUXlGP94XSsO5yhZm+pqj7fXjEuxBeju8RgdNdYNSA3q6CJiNw4OL7//vtNeyVE5LCztnx7KEOFxX3nrDu/dYgJxOgusRjdNQbdE0LYfIWIyMVxYDQiuiAs7ksuwNqD6Vh3KB0ns0vMxyQX9kkKw5iuMbiuSyzbKxIRuRkGRyJCdbUBe87lYfWBdBUYLaf4k1lbrmoXoaqgpYNLdJCvXa+ViIjsh8GRyI2Hzdl5OhdrDqZjzcE0ZBSe7+AWoPHCNZ2iMbZbrBpnMZBzQRMRUWODo16vx9dff42RI0ciKCio6a6KiJpElb5aDcK9+mAa1h7MQHbx+bAYpPXGqC4xGNctVvWE9vXxsuu1EhGRkwdHLy8v3HnnnTh06BCDI5GT0OmrVQ9oKVWUTi6W0/zJsDlSBX1991hc1S4SWm+GRSIiql+j65/69++PU6dOoU2bNo19KhE1Y1j86Xg2Vu9PU72hZcxFkzB/H4zpGotx3eMwuE0ENN4cNoeIiJooOD766KN4+umnsWLFCiQmJjb26UTUhG0Wt53Mwdf7U1W7xfzS82ExMlCjwuL13eMwsHU4vDnGIhERNUdwvOOOO9S6a9euuOmmmzBixAj07t0b3bt3h0ajuZRrIKLL7A399b40rDqQhqyi820WIwO1qgpawqJM+eflyTEWiYiomYOjVFPv27cPe/fuVesFCxbg9OnT8Pb2RseOHbF///7LvCQiutg4iwdTClXJ4qr9aVZD58jUfhIWb+wRj4FtIhgWiYjIvsGxZcuWapHSRpOioiIVJBkaiZrOrxlF+HpfqlpO55Sa98tQOTLV340941UHF7ZZJCKipuJhkOILanaFhYUICQlBQUEBgoOD7X055KBOZ5fgm/0SFtNwLKPIvN/XxxMjO8fgxh5xapxFDp1DRETNkUucomhCqsLvv/9+tG7dGn5+fmjbti2ee+45VFaeH1ZESInn0KFD4evrqzruLFy48ILX+vTTT9GpUyd1jrTLXL16tdVxydHz589HXFyceq9Ro0bht99+szonNzcXd999t7qxoaGh6tqKi4ub6KsndyNjKy79+RRufutnjHh1E15d96sKjT5eHhjVOQaLJ/XCrmeuw1t39cHYbnEMjURE1GycYjqIo0ePorq6Gv/4xz/Qrl07HDx4EA8++CBKSkrw6quvmpPy6NGjVdBbsmQJDhw4gGnTpqlg9/vf/16ds2XLFjUOpbTLvOGGG/DRRx9hwoQJ2L17N7p166bOkbD5+uuvY9myZSqoPvvssxgzZgwOHz6swqaQ0JiWlob169dDp9Nh6tSp6j3k9YguRWllFdYfzsAXe1Lww2/Zqoe0kCaKUv0s1dBjusQixN/H3pdKRERuzGmrql955RW88847OHnypNqWx3/605+Qnp5u7t09d+5cfPHFFyp4mnqES9j85ptvzK8zaNAg9OrVS4VNuRXx8fGYM2cOHn/8cXVcimxjYmKwdOlSTJo0CUeOHEGXLl2wY8cO9OvXT52zdu1aXH/99UhOTlbPtwWrqklmcdlyIkeFxbWH0lFaqTcf69kiBBN6J+CGHvGICtLa9TqJiMj1FdqYS5yixLEu8oWFh4ebt7du3Yphw4ZZDQkkJYUvv/wy8vLyEBYWps6ZPXu21evIORIuTT3GJXhKqaWJ3MSBAweq50pwlLWUYppCo5DzPT09sW3bNtxyyy11Xm9FRYVaLP+DyP3Ih5NDqYX4fE8KvtqXajV8TmK4H27plYCbeyegbVSgXa+TiIjIZYLj8ePH8cYbb5irqYUEPqlatiQlhaZjEhxlbdpneY7sN51n+bz6zomOjrY6LkMRSYg1nVMXqR5//vnnL/ErJmd3LrcUX+5NUYHxRFaJ1SwuUqo4oXc8+iSFwcODw+cQEZHjsmtwlKpkKRFsiFQNS2cWk5SUFIwdOxa33367aufoLObNm2dV2ikljpx5x7UVluvUOIsrdydjx+k8836ttydGdYlRpYvDOkRx+BwiInIadg2O0pZwypQpDZ5jOSd2amoqrrnmGgwZMgTvvvuu1XmxsbHIyMiw2mfalmMNnWN53LRPelVbniPtIE3nZGZmWr1GVVWV6mlten5dtFqtWsi1SaeWLSeysWJXMtYeTEdFVbXaLwWJMi+0tFsc2y0Wwb7s5EJERM7HrsExKipKLbaQkkYJjX379sX777+v2hRaGjx4sOocI72cfXyMf5Sl17PMZiPV1KZzNmzYgFmzZpmfJ+fIfiFV3RL+5BxTUJSSQWm7OH36dPNr5OfnY9euXepaxMaNG1Wvb2kLSe7pZFYxPtudjJW7U5BWUG7e3y46ELf2aYFbeicgNsTYK5+IiMhZOUWvagmNMie2zFgjw+R4eZ0ft85UyiedZSQkypA8Tz31lBqyR4bjee2116yG4xk+fDheeukljB8/HsuXL8df//pXq+F4pOpcjlsOxyPjQ1oOxzNu3DhVCik9sU3D8UhnmcYMx8Ne1a5RFf3NvjQVGHedOV8VHezrjZt7JeC2vi3Qo0UI2y0SEZHDc6le1VIqKB1iZGnRooXVMVPulS923bp1eOSRR1RJYGRkpBrI2xQahVRxS7h75pln8PTTT6N9+/aqR7UpNIonn3xSDdkjz5OSxauvvloNt2MKjeLDDz/EjBkzMHLkSFXyeeutt6qxH8k9qqJ/Pm6siv720PmqaBlvcXiHKNzWNxEjO3MmFyIick1OUeLoilji6FxOSFX0LmNVdHrh+aro9tGBqmRRqqKjg1kVTUREzsmlShyJ7KGsUo9VB9Lw8Y6zVr2iQ/x8cHOveBUYuyewKpqIiNwHgyNRLQeSC7B8x1l8tTcVRRVVVlXRt/czVkVrvVkVTURE7ofBkUg6V5Xp8NXeFCzfcU7N7GI5m8uk/kmqZzR7RRMRkbtjcCS3Jc17t5/Kxcc7zqkqaVNHF42XpxprcVL/RAxqEwFPKW4kIiIiBkdyPzI/tAyhI4HxVPb56f86xgRh0oBETOiVgLCA83OeExERkRGDI7kEvV6PH3/8EWlpaWrWn6FDh1qN9ynD6PzwWxaWbz+LDUcyUVVtHEwgQOOFm3rF447+SejJMReJiIgaxOBITm/lypWYOXMmkpOTzftkvM/Fixdj6HXj8cnOc/jf9rNIziszH++TFKraLo7vEYcALX8MiIiIbMG/mOT0ofG2224zDwRvku0Zhj98sB3BOzTQGzzMw+hIJxepju4QE2SnKyYiInJeDI7k1NXTUtJoCo2e2gAEdB+JoF7j4BORaDzHAPRODME9g1qp0kXO6EJERHTpGBzJaUmbRqme1sR1QFDvcfDvNAyePlp1rLqiFCWHN6Fo7xos/fjfGNHXeqpKIiIiajwGR3JKJRVV+OJgNuKmLIYmpq15f2XmKRTtWa1Co6HS2KZROswQERHR5WNwJKfya0YRPth6Gl/sSUVxhZ8KjdW6CpQe/VGVLlamHrvgOdLLmoiIiC4fgyM5vCp9Nb47kollW05j68kc8/7Wkf448e0ypP68EvqyogueJ0PrSO9qGZqHiIiILh+DIzms3JJKNWf0h7+cRUq+sdpZJnEZ3SUW9w1uicFtI/B5mzzctuEDFRIte1abxmNctGiR1XiOREREdOkYHMnhHEguwLKtp/HVvlRU1kwDGB6gUVMA3j2oJRJC/cznTpw4EStWrKhzHEcJjXKciIiIrgwPQ+0B8KhZFBYWIiQkBAUFBQgODoa7k4C45mCaqo7efTbfvL97QggmD2mFGy4ylM7FZo4hIiKiy88lLHEku8ooLMeH287io21nkV1cofb5eHlgfPc43DekFXonhto0DaCExBEjRjTDFRMREbkvBkeyiz1n8/Dvn09jzYE087zRMcFa3D2wpZrZJTrI196XSERERLUwOFKz9o7+9lAG/vXTSavq6P6twlR19JiusfDx8rTrNRIREVH9GBypyRWW6/Dx9nNYuuW0uXe0xssTN/aMx9SrWqFbQoi9L5GIiIhswOBITeZMTgne//k0Pt15DiWVenPv6HsGJuGewS1ZHU1ERORkGBzpipJO+ttP5eJfP53C+iMZMPXZ7xATiGlXtcaE3gkN9o4mIiIix8XgSFdsOJ1VB1JVYDyYUmjeP7xDFO6/ujWGto+0qXc0EREROS4GR7osBWU6fLjtjBp/MaPQOJyO1tsTE/u0wP1Xt0K76CB7XyIRERFdIQyOdElS88vw759O4X/bz5rbL0YHadVUgHcNbKnaMhIREZFrcZqxT2666SYkJSXB19dXzQxy7733IjU11eqc/fv3qxlD5JzExEQsXLjwgtf59NNP0alTJ3VO9+7dsXr16gva6M2fP1+9h5+fH0aNGoXffvvN6pzc3FzcfffdamT10NBQ3H///SguLoY7OJpeiNkf78Wwhd/jvZ9OqdDYMSYIf7u9J3566lrMuLY9QyMREZGLcprgeM011+CTTz7BsWPH8Nlnn+HEiRO47bbbrKbKGT16NFq2bIldu3bhlVdewZ///Ge8++675nO2bNmCO++8UwW9PXv2YMKECWo5ePCg+RwJm6+//jqWLFmCbdu2ISAgAGPGjEF5ebn5HAmNhw4dwvr16/HNN9/ghx9+wO9//3u4KgnTW05kY/K/t2Psoh+xck+KGrR7cJsILJ3aH2tnDcWtfVtA4+00305ERETkTnNVf/XVVyr0VVRUwMfHB++88w7+9Kc/IT09HRqNscRr7ty5+OKLL3D06FG1fccdd6CkpESFPZNBgwahV69eKijKrYiPj8ecOXPw+OOPq+MyZ2NMTAyWLl2KSZMm4ciRI+jSpQt27NiBfv36qXPWrl2L66+/HsnJyer5dZHrlMUy6EqpqCPPVS0Ddq89lI5/bD6JAykFap+nBzCuexz+MKwNerQItfclEhERUTPOVe2URURSVfzhhx9iyJAhKjSKrVu3YtiwYebQKKSkUEoo8/LyzOdI1bMlOUf2i1OnTqngaXmO3MSBAweaz5G1VE+bQqOQ8z09PVUJZX0WLFigXsu0SGh0VGWVenyw9TSu/dtmzPhojwqNvj6eqv3ipsevwVt39WFoJCIickNO1TnmqaeewptvvonS0lJVUmhZciiBr3Xr1lbnS0mh6VhYWJham/ZZniP7TedZPq++c6Kjo62Oe3t7Izw83HxOXebNm4fZs2dfUOLoSPJKKrFs62nVQzqvVKf2hfn7qOkA7xvcim0XiYiI3JxdSxylKlnG9mtoMVUziyeeeEK1TVy3bh28vLxw3333qeplZ6DValXRr+XiKDIKy/HiqsO46uWNWPTdbyo0JoX744Wbu2LL3JGYNaoDQyMRERHZt8RR2hJOmTKlwXPatGljfhwZGamWDh06oHPnzqrE7pdffsHgwYMRGxuLjIwMq+eatuWYaV3XOZbHTfukV7XlOdIO0nROZmam1WtUVVWp6nPT853FudxSLNl8Ap/uTEalvlrt6xofjIeGt8W4brHw9nLKlgxERETkisExKipKLZeiutoYdEwdTiQ8SucYnU5nbvcovZ47duyoqqlN52zYsAGzZs0yv46cI/uFVHVL+JNzTEFRqpSl7eL06dPNr5Gfn696bvft21ft27hxo7oeaQvpKPR6PX788UekpaWpECzDFEkprfgtowhvbzqBr/alQl9tLLHt1zIMj1zbDiM6RHGGFyIiInLeXtUS3KQX89VXX61CoAzF8+yzz6qSQBkWR6qBpReQhEQZkkfaQsoQO9OmTcNrr71mHipHhuMZPnw4XnrpJYwfPx7Lly/HX//6V+zevRvdunVT57z88svq+LJly1SQlPeR8SEPHz6sxn4U48aNU+8tPbElqE6dOlV1lvnoo4+ueO+lS7Fy5UrMnDlT9fI2adGiBR5/8XUc9kjEt4fOl7oO6xCFR0a0xcA2EVf0GoiIiMh52JxLDE5g//79hmuuucYQHh5u0Gq1hlatWhkeeughQ3JystV5+/btM1x99dXqnISEBMNLL710wWt98sknhg4dOhg0Go2ha9euhlWrVlkdr66uNjz77LOGmJgY9TojR440HDt2zOqcnJwcw5133mkIDAw0BAcHG6ZOnWooKipq1NdUUFAggV2tr6TPPvvM4OHhoV7btGgTuxmif/eCoeVT35iXP3yw07D/XP4VfW8iIiJyTrbmEqcocXRFTVHiKNXTrVq1Mpc0+rbph5DBt8O3RVe1bajWA6d34NvFj6NTXMgVeU8iIiJyn1ziVMPxUMOkTaMpNAb1uQHh1z2kHhuqKlG8fz0Kt69EVUEG0h8eiU5xI+x8tURERORsGBxdiHSEMSk5vBnBg3+HkkPfo2jHF9CX5NV5HhEREZGtGBxdiOUQQtXlRUh5ZxpQXdXgeURERES24kB9LkSG3JHe0+bhdGqFRtkvY1/KeURERESNxeDoQmScxsWLF6vHtcdiNG0vWrTIPJ4jERERUWMwOLqYiRMnYsWKFUhISLDaLyWRsl+OExEREV0KDsdjJ9LdPTQ0FOfOnWuSeatlaB4Z8Dw9PV3NhjNkyBCWNBIREVG9w/FIczaZHU+G5akPO8fYSVFRkVrLfxIRERGRo+SThoIjSxztROa2Tk1NRVBQkN3nhjZ9ymiq0k9Xw/vVeLxnjcd71ji8X43He9Y4rn6/DAaDCo3x8fHw9Ky/JSNLHO1E/lOk3aEjkR8EV/xhaCq8X43He9Z4vGeNw/vVeLxnjRPswveroZJGE3aOISIiIiKbMDgSERERkU0YHAlarRbPPfecWtPF8X41Hu9Z4/GeNQ7vV+PxnjUO75cRO8fYiSN1jiEiIiL3ZmDnGMcmoZFD8RAREZEjkV7jDXXeZXC0EylpFK7arZ+IiIicZyIP03BDpnxSHwZHOzFVT7tyt34iIiJqvJUrV2LmzJlITk4275NSwMWLFzf51MEXaz7HzjFEREREDhQab7vtNqvQKFJSUtR+OW5PDI5EREREDlI9PXPmTNVRpTbTvlmzZqnz7IVV1URERETNQKevRklFFUoq9WpdLI9rluIKPfYePILChEEIbe0HD40fPLV+8PDxg6fGD2Wn96Boxxeqb8SPP/6IESNG2OVrYHAkIiIiuggp8Sut1KOwXIei8ioUltWsy3UorLV9/rjxmFqXVaFMd/GSwrARU+rcry/JNz9OS0uDvThNcFywYIGq1z969Cj8/PxU76KXX34ZHTt2NJ9TXl6OOXPmYPny5aioqMCYMWPw9ttvIyYmxnzO2bNnMX36dHz//fcIDAzE5MmT1Wt7e5+/FZs2bcLs2bNx6NAh1cPomWeewZQp1v+Rb731Fl555RXV26lnz5544403MGDAgGa6G0RERHSpAVBK+vJLdWrJK61Efpk8rkReiQ75ZZXn96tzjMclDOqrr8zQ1xpvTwRqvRGg9UKARtbGpbQgF5u+W4vqijIYKstQXVkGg64c1ZWl0OWmmJ8fFxcHe3Ga4Lh582Y88sgj6N+/P6qqqvD0009j9OjROHz4MAICAtQ5jz32GFatWoVPP/1UTdQ9Y8YM1fvo559/VselTcD48eNVt3bp4i6J/b777oOPjw/++te/qnNOnTqlznnooYfw4YcfYsOGDXjggQfUf5IEUfHxxx+rYLlkyRIMHDgQixYtUseOHTuG6OhoO94lIiIi91JRpUduSSVyiiuRo9YV6nF2SQVyiy1CYU1QLCirhE5/6QHQ29MDwX4+CPL1RrBvrXXt/X4+5schNcckIPp41d3FRHJKq78/qDrC1NXOUXo8S+/qoUOHwl6cduaYrKwsFdIkUA4bNgwFBQWIiorCRx99pHodCSmd7Ny5M7Zu3YpBgwZhzZo1uOGGG9Tg26ZSSAl/Tz31lHo9jUajHkv4PHjwoPm9Jk2ahPz8fKxdu1ZtS1iUAPvmm2+aZ4GRkslHH30Uc+fOtXm8JAm3ct0cjoeIiBydhBppWyeFLlKYIuGlKcYVrK42ILe0JghKCDSFwZJKZNfsU0FRbVeoksBLofX2RJi/BqH+PmoxPjZuh8k+v5rHARoV+kzBz8/Hq0lnfDP1qhaWEc30nitWrGiSIXlszSVOU+JYm3xhIjw8XK137doFnU6HUaNGmc/p1KkTkpKSzMFR1t27d7equpaSQqm6lmrp3r17q3MsX8N0jvRiEpWVleq95s2bZz4uU/PIc+S59ZGqc1ks/4OIiIjcZVzByqpqFfQyiyqQWVhuXBdVIKuoHJmFNfuLylU4bGyVsJQCRgRqEB6gRWSgBhEBGkQEahEeoKkjHBrXvj5NN5j25ZD7KeGwrvstNZxNPY7jxThlcJQSPglyV111Fbp166b2SVtDKTEMDQ21OldCohwznWMZGk3HTccaOkeCXllZGfLy8tSnrrrOkRLO+kg7yueff/6yvm4iIqLmZioBq11BaRpX8ONPVmDIqHFILyhDeoEx/BnDofFxVk1AlFJCW0nhWqifjwp/EgIjZa0CoRbhgRpE1gRD2RcZoEWwn3eTlgI2NwmHN998c7OU8LpFcJS2jlKV/NNPP8FZSAmltIusPbUPERGRoyqr0GHm0y9AE98ZXsGR8A6KhJdaIuAdFAWv4Ag8vsMHHjs32lwyGBWkRXSQFlFBvogONj6OlseyVtu+qtTQu552gO7Cy8vLbkPuuFRwlA4v33zzDX744QerSbilw4tUI0tbRMtSx4yMDHXMdM727dutXk+Om46Z1qZ9ludIfb/05pb/SFnqOsf0GnXRarVqISIicgRSHSwlgsl5ZUjJK0NaQbkqNZS1aZGqZa8JL6L+v25GXh5AXKgfYoNNYdDXHBCjZV/NY6ki9vR0nZJBd+Q0wVGKyKXzyeeff66Gy2ndurXV8b59+6re0dIL+tZbb1X7pJezDL8zePBgtS3rF198EZmZmebez+vXr1ehsEuXLuZzVq9ebfXaco7pNaQ6XN5L3mfChAnmqnPZllBLRETkKINNpxfUBMP8MiTnlaqAaNpOzS9DlQ1tCQ1VOlQVZUNflG1e64tyjI8Ls1BVlIMP/vk27r5rfLN8XWRf3s5UPS09pr/88ksEBQWZ2yRKDyApCZT1/fffr6qDpcOMhEEJmhL4pGOMkOF7JCDee++9WLhwoXoNGaNRXttUGijD8Ehv6SeffBLTpk3Dxo0b8cknn6ie1ibyHjL+Y79+/dTYjdJYtaSkBFOnTrXT3SEiIncMhqYgqEKhCofG0kPZTi8sx8VyoVQdx4b4IiHUTy3yOC7EF7Ehfmp98tBu3Dzm2oteS0K8/cYVpOblNMPx1Nfo9f333zcPzm0aAPx///uf1QDgllXIZ86cUb2opdRSxn+UAPjSSy9dMAC4jAkpY0RKdfizzz57wQDgEi5NA4D36tULr7/+uhqmx1YcjoeIiC5GZhw5k1OKs7ml5vXZ3BL1WEoMLxYMNV6eSAgzhsIWpnW4rP3VdkywL7waqDpW4wq2anXRcQVlDGRH6LhBl87WXOI0wdHVMDgSEZGMWSg9js/klOBMbinO1QREeXw2p0QNWt0QXx9PtAgzhkBjOPQ3B8XEMD/VG/ly2xTaa1xBal4uP44jERGRM5CwJUPSnMwuwama5WRWCU7nlKigWFFV3eDzZTiapAh/tAz3R5IsEQFoGWF8LB1OmnoYGkcfV5CaF0sc7YQljkRErqWwXIdTWTXB0BwSi9W+kkp9vc+TqmIpIZQwmBhuDIjGYBiAxHA/BPn6wJ1mjiH7YIkjERHRFSazn0i18oksi2BYExJlxpP6SG2xhMLWkQFqaRMppYbGksP4UL965y52JI46riA1LwZHIiKiWkorq3AiswTHs4rwW0YxjmcW43hWsWp/2NB0eFJ1rIJhlDEgto4MVGupVtZ4O344JLoYBkciInJb+aWVxlCYWYzfatayyNA29QnUeqtg2MYUDGset4oMUMeIXBm/w4mIyOXJPMlH0wvNpYe/ZRbheKZUL1c02CmlbXQg2kcHol3N0j46CDHBTd8hhchRMTgSEZHLKKvU49eMIhyTJb1myShSvZrrEx/iWxMQg8wBUZbwAE2zXjuRM2BwJCIip1Olr8bpnNKacFhoDooy/mF9Y4VIO8MOMRIKg8yliBIYWb1MZDv+tBARkUPLLCrH4dRCcwni0fQi1VFFejjXV8XcMTbIuMQY1x1ighDAgEh02fhTREREDkF6K8ug2IdSC1VQPJxmXNfXDtHPxwsdVDgMRMfYYHSqCYsyWwoRNQ0GRyIisktbROmsYgqHsj6aVoQy3YUDZUs/FOm13CkuGJ1iglRYlJCYGOZ/2dPpEVHjMDgSEVGTkhJD61LEAjVgdl3DIcrcy51ig9E1PhhdZIkLVqWI/hr+uSJyBPxJJCKiKyanuAIHUgpwMKUA+5ON69SC8jrPjQzUoEt8iAqHppAog2XLFHxE5JgYHImI6JLHRjwfEvNxMKWwzoGzpaq5VUSACoeqJLEmKEYH+drluono0jE4EhGRTTOsHLAoRZR1fbOrSHvEbgkh6NEiRK0lLAb5+jT7NRPRlcfgSEREF3RcOZRagL3n8rHnXL4qTTyXW3dIbG0KiQk1ITEhGMEMiUQui8GRiMiNVVcbcDK7GHvO5qugKIuMkyhD49TWKsLfqiRRFoZEIvfC4EhE5GY9nPdahMR9yfkoKq+64LyoIC16JYaaFwmJIX4MiUTujsGRiMhFlev0qj2iqcp537l8JOeV1TkETo+EUPRKCkXPFsa1zN/sIb1aiIgsMDgSEbnQ1Hy7z+Rh5+k87Dqbp0KjTm9d5SxZsF1UoLEkMclYmijT8nl7edrtuonIeTA4EhE5IWmD+GtGEXaeyTOGxTO5dXZgkbESeyWGoXdNSOzegu0SiejSMTgSETmBonKdqnLedSZPLdKZpbii6oLSRCk97NsyDP1ahaFvUjgSw/1Y5UxEVwyDIxGRA5IxEnecylUlibvO5ONYeuEFU/QFar1VSWKfpDAVFqXqmaWJRNSUGByJiOzMYDCouZu3n8pVy7ZTuXUOri2lh30lJLYKV2uZw5nT8xFRc2JwJCKyw9iJMlbijtPng6IMk2NJAmG3+GD0l5DY0liiGB3MKfqIyL6cqhvdDz/8gBtvvBHx8fGqzc4XX3xxwaf2+fPnIy4uDn5+fhg1ahR+++03q3Nyc3Nx9913Izg4GKGhobj//vtRXFxsdc7+/fsxdOhQ+Pr6IjExEQsXLrzgWj799FN06tRJndO9e3esXr26ib5qInJ2On019pzNwz82n8D9S3eg1wvrcP3rP+K5rw5h1YE0FRo13p4Y2Docf7y2Hf57/0Dsf240vpxxNZ65oQvGdY9jaCQih+BUJY4lJSXo2bMnpk2bhokTJ15wXALe66+/jmXLlqF169Z49tlnMWbMGBw+fFgFPCGhMS0tDevXr4dOp8PUqVPx+9//Hh999JE6XlhYiNGjR6vQuWTJEhw4cEC9n4RMOU9s2bIFd955JxYsWIAbbrhBPXfChAnYvXs3unXr1sx3hYgcTUWVXg2yLSWJUqIonVnKdHqrcwI0XqrKWcLigNbhajYWrbeX3a6ZiMgWHgYppnNCUuL4+eefq8Am5MuQksg5c+bg8ccfV/sKCgoQExODpUuXYtKkSThy5Ai6dOmCHTt2oF+/fuqctWvX4vrrr0dycrJ6/jvvvIM//elPSE9Ph0ajUefMnTtXlW4ePXpUbd9xxx0qxH7zzTfm6xk0aBB69eqlwqYtJKCGhISoa5TSTyJy7hLF/ckF+OVkDraeyFEdWsp11VbnhPr7qGpnU1DsEhfMsROJyGHYmkucqsSxIadOnVJhT0oKTeQGDBw4EFu3blXBUdZScmgKjULO9/T0xLZt23DLLbeoc4YNG2YOjUJKLV9++WXk5eUhLCxMnTN79myr95dzaledW6qoqFCL5X8QETnvGIqHUwux9WQ2tpzIUb2fSyqtSxQjA7UY1CYcA9tEqLAog257siMLETk5lwmOEhqFlDBakm3TMVlHR0dbHff29kZ4eLjVOVLNXfs1TMckOMq6ofepi1RrP//885f1NRKR/Tqz/JpZpEoTJShuO5mDwlrzO0uJ4qDWERjSLgJD2kagbVQgx08kIpfjMsHR0c2bN8+qlFJKHKXjDRE5Hmn6cjK7RAVFWaQKOqek0uqcIK23qnIe3DZCLZ1jg1miSEQuz2WCY2xsrFpnZGSoXtUmsi1tD03nZGZmWj2vqqpK9bQ2PV/W8hxLpu2LnWM6XhetVqsWInJMOcUV+Ol4Nn76LVut0wrKrY77+Xip2ViGtI1UQVGGymEbRSJyNy4THKV6WYLbhg0bzEFRSvWk7eL06dPV9uDBg5Gfn49du3ahb9++at/GjRtRXV2t2kKazpHOMdLj2sfHOAOD9MDu2LGjqqY2nSPvM2vWLPP7yzmyn4icQ7lOj52n8/Dj8Sz8+Gs2DqdZtzvWeHmiT8tQc1Ds2SJUDZlDROTOnCo4yniLx48ft+oQs3fvXtVGMSkpSQW5v/zlL2jfvr15OB7pKW3qed25c2eMHTsWDz74oOr9LOFwxowZquOMnCfuuusu1RZRxnd86qmncPDgQSxevBivvfaa+X1nzpyJ4cOH429/+xvGjx+P5cuXY+fOnXj33XftcFeIyNZ2ikfSC80lijJMTkWVdc/nTrFBGNo+Ele3j8KAVuHw03B4HCIipx2OZ9OmTbjmmmsu2D958mQ15I58Kc8995wKcFKyePXVV+Ptt99Ghw4dzOdKtbSExa+//lr1pr711lvV2I+BgYFWA4A/8sgjatieyMhIPProoypE1h4A/JlnnsHp06dVUJUxJGVYH1txOB6ippdWUIYfJSj+lo2fj2df0E4xJliLq9tFqbB4VbtIRAWxOQkRuadCG3OJUwVHV8LgSNQ01c8y6PamY5kqMB7PtJ4Vyl/jhUFtInB1u0gVFttFs+czEZFbjuNIRO7pdHaJCoqbfs1SvZ8tB96WTs7dW4RimFQ/t4tE76QwtlMkIroMDI5E5FTKKvUqIEpY3PxrFk7nlFodjw32xYiOURjeIUp1bAnxN3ZyIyKiy8fgSEROMabi5mNZqlRRBt+27NTi4+WBfi3DjWGxYxQ6xgSx+pmIqIkwOBKRwymtrFIDb29SYTET53LLrI7Hh/hieMdoFRalU0uglr/KiIiag82/bWW8Q+mN/Msvv1zQaFIaUg4ZMkQNcTN06NCmuE4icnEp+WXYeCQDG45mqmn9Ki1KFWVMxf6twzCigzEsslMLEZGDB8dFixap8Q/r6mkjvXD+8Ic/4O9//zuDIxHZPK7i3uR8bDySie+OZOBoepHV8RZhfiokSliUAbgDWKpIRGR3Nv8m3rdvH15++eV6j48ePRqvvvrqlbouInJBxRVV+Om3LGw4konvj2Uiu7jSqgd035ZhuLZTDEZ1jmapIhGRMwdHmYvZNAVfnS/k7Y2srKwrdV1E5CLO5ZZiQ00V9LaTuajUn6+CDtJ6Y1jHKBUUh3eIRniAxq7XSkREVyg4JiQkqOn32rVrV+dxmW0lLi7O1pcjIheugt5zLl9VP0tg/DXDehDulhH+GFlTqtivVTjHVSQicsXgKNPpydzPMtezr6+v1bGysjI11d8NN9zQFNdIRA6uokqvOrSsO5SB9YczkF1cYT7m5SnD5YRhZOdojOwcgzaRAayCJiJyUjZPOShV1X369IGXl5fqXd2xY0e1/+jRo3jrrbeg1+uxe/duxMTENPU1uwROOUjOrrBcp4bLWXcoXa2l/aJlFfSITtE1VdBRCPVnFTQRkVtNOSiBcMuWLZg+fTrmzZunBuUVUnIwZswYFR4ZGolcW2ZhOdYdzlDL1hPZ0OnPf+6MDtJidNcYjO4Sq+aDZhU0EZHradT4Fi1btsTq1auRl5eH48ePq/DYvn17hIWFNd0VEpFdncgqVlXQ6w6nY8/ZfKtjbaMCMLprLMZ0jUWPhBB4StdoIiJyWZc0MJoExf79+1/5qyEiu5MPhAdSCrD2YDq+PZSOE1klVsd7JYaqoHhdlxg1ZA4REbkPjqhLRObBuNccSMPqA+lqFhfLuaAHt43E6C4xKizGBFt3jiMiIvfB4EjkxmFx19k8rD6QpkoX0wrKzcf8fLxwTacoVbJ4TadoBPvWP4YrERG5j0YFR+k5/fXXX2PkyJEICgpquqsioiahrzZg+6lcrDloDIuZReeHzQnQeKnhcq7vHqsG4/bTeNn1WomIyMmDowzFc+edd+LQoUMMjkROokpfjV9O5mL1wTQ1dI7lNH9Bvt64rnMMxnWPw9D2kfD1YVgkIqIrWFUtnWJOnTqFNm3aNPapRNRMdPpqNSD36v1pqjd0XqnOfCzEz0e1V7y+exyGtIuA1pthkYiImig4Pvroo3j66aexYsUKJCYmNvbpRNSE1dA7Tufi632pWHMwHbkl50sWZQ7oMV1jMK5bHAa3jYCPF8dYJCKiZgiOd9xxh1p37doVN910E0aMGIHevXuje/fu0Gg4OwRRcw+dI/NCS1hctT/Nqs1iRIAGY7vFYnz3OAxoHQ5vhkUiImru4CjV1Pv27cPevXvVesGCBTh9+jS8vb3VNIT79++/3GsioouExcNphfh6Xxq+2Z+K5LzzQ+cE+3qrsHhjz3gMbhPBsEhERPYNjjJ7jCxS2mhSVFSkgiRDI1HTOZ5ZpMLi1/tTcdJiUG5/jZdqs3hDj3gM7RDJNotERNRkPAymSafJIScTJ/d2LrdUBUUJjEfSCs37td6euLZTtCpZvKYjh84hIqLmySUcAPwyvPXWW3jllVeQnp6Onj174o033sCAAQPsfVnk5KRTy6r9qfh8Twp2W8wNLTO4DGsfhRt6xmFU5xgEcVBuIiJqZgyOl+jjjz/G7NmzsWTJEgwcOBCLFi3CmDFjcOzYMURHR9v78sjJlOv0+O5IBr7Yk4JNx7JQVW2sCPD0AIa0jcSNPePULC6h/uyARkRE9sOq6kskYVHGtHzzzTfVdnV1tRqeSIYrmjt3rs1FwmlZOeYiYV9vL3hKUrAIE9UW/z3enp7QeHtaDexcqa82b3vA44Iqy9LKKqttvofjvIcMn7P3XD6+3JuqZnEprjh/rGtcMMb3iMPNveKREObv0F8H34Pvwffge/A9qpz+PVhV3YQqKyuxa9cuzJs3z7zP09MTo0aNwtatW+t8TkVFhVos/4PEgBc3wFNrDAbrHhuGDjHnZ+SZ/clerD6Qbt6eObI9Hruug3n720MZeOSj3ebt9tGBWD97uNX7dpn/rdU238Ox3sNSizA/1XbxRFYJDqUVqqWiqtopvg6+B9+D78H34Hs4/3vYgmN1XILs7Gw1b3dMTIzVftmW9o51kWGLJMmbFg6e7l5S8svw9qbjF+wP1Hrj7oFJ+PShwfjhiWvQMZZTeRIRkeNiVfUlSE1NRUJCArZs2YLBgweb9z/55JPYvHkztm3bZlOJo4RHVlW77nuUVOjx/dFMfLY7GdtO5Vp1crmmUxRu7B6PUV1i4Kfxduivg+/B9+B78D34Hq7/HoU2VlUzOF5iVbW/v7+adnHChAnm/ZMnT0Z+fj6+/PLLi74Gh+NxTdXVBvxyMgcrdiWraf/KdHq138MDGNg6HLf0TsDYbnFqvmgiIiJHwTaOTUimVuzbty82bNhgDo7SOUa2Z8yYYe/LIzs4k1OCz3Yl47PdKapa2qRNVABu7dNCBcb4UD+7XiMREdHlYnC8RDIUj5Qw9uvXT43dKMPxlJSUYOrUqfa+NGomReU6rD6Qhs92pWD76fNV0UG+3ripZzxu69sCvRJD4SHFjURERC6AwfES3XHHHcjKysL8+fNVh5hevXph7dq1F3SYIderit5qropOQ7nO2F5EmpkMbR+lwuJ1XWLg68OZXIiIyPWwjaOdsI2jczmdXaI6uaysVRXdNioAt/VNVFXRsSG+dr1GIiKiS8U2jkSXSXqoSani8u3nrHpFB0tVdK941XaRVdFEROROGByJajmUWoCPd5xTc0UXlVdZVUXf3q+FmieaVdFEROSOGByJpIi+XIev9qaqwHggpcBqNpc7+iXitn4tEBfCXtFEROTeGBzJbUnz3p1n8lRV9KoDqeaOLhovT4zuGoNJ/ZMwpG2E1QCrRERE7ozBkdxOdnEFVu5OxvId53Ayq8Rq3s5JA5JUR5fwAI1dr5GIiMgRMTiSS5C5w3/88UekpaUhLi4OQ4cOhZeXl9UwOj8ez8by7Wex/nAGqqqNgwn4a7xwY4943DEgEb3Z0YWIiKhBDI7k9FauXImZM2ciOTnZvK9FixZYvHgxho0ej093JuOj7WdwLvf8MDrSG3pS/0Tc0DMegVr+GBAREdmCfzHJ6UPjbbfdptorWsr2CMUflv2C4B0a6A0e5mF0JvZpgUkDEtEplmNnEhERNRaDIzl19bSUNJpCo4c2AIHdrkVgr3HQRCYZzzEAPVuE4J5BLXFDj3j4aTiMDhER0aVicCSnJW0apXpaE9seQb3Hwb/zMHj6GGdvqa4sQ8nhTSjeuxZLl7+HEf0S7X25RERETo/BkZxSSUUVvjyYjdjJi6CNbWfeX5l1GkV7VqPk0CYYKkvVPukwQ0RERJePwZGcyvHMInyw9Qw+352Cogo/FRoNVZUoOfoTiveuRkXK0QueI72siYiI6PIxOJLD01cbsOFIBpZtPY2fj+eY97eM8MepdR8gdcvn0Jeen+3FRIbWkd7VMjQPERERXT4GR3JYeSWV+HjnOfxn6xmk5BuH0pFJXGSu6PsGt1KzunzRNg+3bVimQqJlz2rTeIyLFi2yGs+RiIiILh2DIzmcgykF+GDraXy5NxUVVcZpAEP9fdQUgPcMSkKLMH/zuRMnTsSKFSvqHMdRQqMcJyIioivDw1B7ADxqFoWFhQgJCUFBQQGCgzmmoE5fjTUH0/HBltNq/miTrvHBmDykFW7qGQ9fH69LnjmGiIiILj+XsMSR7CqzqBwfbTurlsyiCrXP29MD47rHYcqQluiTFGbTNIASEkeMGNEMV0xEROS+GBzJLvady8e/fz6F1QfSoJNRugFEBWlx14Ak3D0wCdHBxvEYiYiIyHEwOFKz9o5edygd//rplFV1dJ+kUFUdPa5bHDTenna9RiIiIqofgyM1uaJyHT7ecQ5Lt5xGcl6ZuTr6xp7xmHZVa3RvEWLvSyQiIiIbMDhSkzmXW4r3fz6NT3aeQ3FFlbl3tFRFy3A6MayOJiIicioMjnRFSSd9qYb+14+nsO5wOqpr+uy3jQrAtKtbY2LvFvDTsLczERGRM2JwpCs2nI50dJH2i/uTz8/iMrR9pAqMw9tHwVNG7yYiIiKnxeBIl6WwXKeG0ln682mkF5arfdLB5ZZeCSowdowNsvclEhER0RXC4EiXJK2gTLVflNBoar8YGajFvYNa4u5BSeoxERERuRanGfvkxRdfxJAhQ+Dv74/Q0NA6zzl79izGjx+vzomOjsYTTzyBqipjqDHZtGkT+vTpA61Wi3bt2mHp0qUXvM5bb72FVq1awdfXFwMHDsT27dutjpeXl+ORRx5BREQEAgMDceuttyIjIwPu4Fh6EeZ8sg/DFn6Pd384qUJj++hALLytB36eew1mjmrP0EhEROSinCY4VlZW4vbbb8f06dPrnXJOQqOct2XLFixbtkyFwvnz55vPOXXqlDrnmmuuwd69ezFr1iw88MAD+Pbbb83nfPzxx5g9ezaee+457N69Gz179sSYMWOQmZlpPuexxx7D119/jU8//RSbN29GamqqS8+JLB1efjmZg2lLd2DMoh/w2e5kNWj3gNbh+PeUfvh21jD8rl8itN7s9EJEROTKnG6uagmDEvjy8/Ot9q9ZswY33HCDCnExMTFq35IlS/DUU08hKysLGo1GPV61ahUOHjxoft6kSZPUa61du1ZtSwlj//798eabb6rt6upqJCYm4tFHH8XcuXPVHI5RUVH46KOPcNttt6lzjh49is6dO2Pr1q0YNGhQndddUVGhFss5IeV1HXmuatOA3Ut+OKlmehEy+9/YrrH4/bA26J0UZu9LJCIiomacq9ppShwvRkJb9+7dzaFRSEmh3IhDhw6Zzxk1apTV8+Qc2S+ktHLXrl1W53h6eqpt0zlyXKfTWZ3TqVMnJCUlmc+py4IFC9R/iGmR0OioynV6/PeXMxj5t02Y/uFuFRqlw4uMv7hxzgi8c09fhkYiIiI35DKdY9LT061CozBty7GGzpFwWVZWhry8PFXlXdc5Uqpoeg0pvazdzlLOMb1PXebNm6eqwGuXODqSglIdPth6Ws3wklNSqfaF+PngvsEt1YDdMpc0ERERuS+7Bkep+n355ZcbPOfIkSOqRM/ZSWccWRxRZlG5Gn/xv1vPoKRSr/YlhPrhgaGtVdvFAK3LfL4gIiKiy2DXRDBnzhxMmTKlwXPatGlj02vFxsZe0PvZ1NNZjpnWtXs/y7bU5fv5+cHLy0stdZ1j+RpSpS3tIi1LHS3PcRbJeaWqZ7TMI11RVa32dYoNwvQRbTG+exy8vVymJQMRERE5e3CUTiayXAmDBw9WQ/ZI72cZikesX79ehcIuXbqYz1m9erXV8+Qc2S+kCrpv377YsGEDJkyYYO4cI9szZsxQ23Lcx8dH7ZNheMSxY8fUUECm13EEUuX+448/Ii0tDXFxcRg6dKgKxeJ4ZjHe2XQCX+5NQVXNnIC9k0Ix45p2uLZTNDykBwwRERFRLU5TBynBLDc3V60lFMlwOkLGYpSxFEePHq0C4r333ouFCxeq9obPPPOMGm/RVEX80EMPqd7STz75JKZNm4aNGzfik08+UT2tTaQd4uTJk9GvXz8MGDAAixYtQklJCaZOnaqOS8eW+++/X50XHh6ugqn0uJbQWF+P6ua2cuVKzJw5E8nJyeZ9LVq0wBN/fR1HPZOw5mA6TH3pr24XiYevaYvBbSIYGImIiKhhBicxefJkiToXLN9//735nNOnTxvGjRtn8PPzM0RGRhrmzJlj0Ol0Vq8j5/fq1cug0WgMbdq0Mbz//vsXvNcbb7xhSEpKUucMGDDA8Msvv1gdLysrMzz88MOGsLAwg7+/v+GWW24xpKWlNerrKSgoUNcv6yvps88+M3h4eFjdI21CF0P0bX82tHzqG/PywLIdhj1n867oexMREZFzsjWXON04ju42XlJjSEmszHhjKmn0bd0HIYN/B9/EbmrbUK0HzuzEmtdmo0t83bPvEBERkfsptDGXOE1VNV2ctGk0hcagPjcg/LqH1GNDlQ7FB79D4bbPUJWfjszp16JL/Ag7Xy0RERE5GwZHFyIdYUxKjvyAkCGTUHJ4Ewq3fw59cU6d5xERERHZisHRhUjvaZPqskIkvzMF0Fc1eB4RERGRrThQnwuRIXek97S5d3St0Cj7ZbYaOY+IiIiosRgcXYiM07h48WL1uPbQOqZtGV7INJ4jERERUWMwOLqYiRMnYsWKFUhISLDaLyWRsl+OExEREV0KDsdjJ9LdXaYsPHfu3BUbjqf20DxbtmxRA6HLVIhDhgxhSSMRERHVOxyPNGeTKZVlWJ76sHOMnRQVFam1/CcREREROUo+aSg4ssTRTmQO7NTUVAQFBdl9qj/Tp4ymKv10Nbxfjcd71ni8Z43D+9V4vGeN4+r3y2AwqNAYHx8PT8/6WzKyxNFO5D9F2h06EvlBcMUfhqbC+9V4vGeNx3vWOLxfjcd71jjBLny/GippNGHnGCIiIiKyCYMjEREREdmEwZGg1Wrx3HPPqTVdHO9X4/GeNR7vWePwfjUe71nj8H4ZsXMMEREREdmEJY5EREREZBMGRyIiIiKyCYMjEREREdmEwZGIiIiIbMLg6KJ++OEH3HjjjWoEeJmZ5osvvrA6PmXKFLXfchk7dqzVObm5ubj77rvVQKcyr/b999+P4uJiuKIFCxagf//+aiaf6OhoTJgwAceOHbM6p7y8HI888ggiIiIQGBiIW2+9FRkZGVbnnD17FuPHj4e/v796nSeeeAJVVVVw13s2YsSIC77PHnroIbe9Z++88w569OhhHkB48ODBWLNmjfk4v8cad7/4/dWwl156Sd2TWbNmmffxe6zx94zfZ9YYHF1USUkJevbsibfeeqvecyQopqWlmZf//e9/VsclNB46dAjr16/HN998o8Lo73//e7iizZs3q1+mv/zyi/p6dTodRo8ere6jyWOPPYavv/4an376qTpfpoycOHGi+bher1e/OCorK7FlyxYsW7YMS5cuxfz58+Gu90w8+OCDVt9nCxcudNt7JrNFyR+mXbt2YefOnbj22mtx8803q58zwe+xxt0vwe+vuu3YsQP/+Mc/VPC2xO+xxt8zwe8zCzIcD7k2+W/+/PPPrfZNnjzZcPPNN9f7nMOHD6vn7dixw7xvzZo1Bg8PD0NKSorB1WVmZqqvf/PmzWo7Pz/f4OPjY/j000/N5xw5ckSds3XrVrW9evVqg6enpyE9Pd18zjvvvGMIDg42VFRUGNztnonhw4cbZs6cWe9z3P2eibCwMMN7773H77FG3i/B76+6FRUVGdq3b29Yv3691T3i91jj75ng95k1lji6sU2bNqki9Y4dO2L69OnIyckxH9u6dauqnu7Xr59536hRo9Qc29u2bYOrKygoUOvw8HC1lhIPKVGTe2DSqVMnJCUlqXslZN29e3fExMSYzxkzZgwKCwutSkjc5Z6ZfPjhh4iMjES3bt0wb948lJaWmo+58z2TUorly5erElqpguX3WOPulwm/vy4kNQFSAmb5vST4Pdb4e2bC77PzvC0ekxuRamqpnmjdujVOnDiBp59+GuPGjVM/AF5eXkhPT1eh0pK3t7cKBXLMlVVXV6v2LVdddZX6JSHka9ZoNCpMW5JfFKb7IWvLXxym46Zj7nbPxF133YWWLVuqtrb79+/HU089pdpBrly50m3v2YEDB1TwkbZm0sbs888/R5cuXbB3715+jzXifgl+f11IwvXu3btVtWtt/D3W+Hsm+H1mjcHRTU2aNMn8WD4pSZuOtm3bqlLIkSNHwp3JJ8+DBw/ip59+svelOP09s2wTK99ncXFx6vtLPqzI95s7khJ+CYlSQrtixQpMnjxZtTWjxt0vCY/8/rJ27tw5zJw5U7U59vX1tffluMw94/eZNVZVk9KmTRtVDH/8+HG1HRsbi8zMTKtzpIeY9LSWY65qxowZqiPQ999/rxrmm8jXLA2f8/Pzrc6X3oim+yHr2r0TTdvueM/qMnDgQLW2/D5zt3smJT7t2rVD3759Vc906cS2ePFifo818n7Vxd2/v6QqWn5v9+nTR9UQySIh+/XXX1ePpRSM32ONu2fSRKK2gW7+fcbgSEpycrJq4yifpIRUDckvF/mhMtm4caOqkjT90LgS6UMkAUiqweTrlCp8S/JHy8fHBxs2bDDvk6oKGYLB1N5K1lKtZhm45VOsDCNiqlpzp3tWFyk5EpbfZ+50z+oiP1MVFRX8Hmvk/aqLu39/SSmYfL1yH0yLtFOXETJMj/k91rh7Jk23atvr5t9n7FXtwj3E9uzZoxb5b/773/+uHp85c0Yde/zxx1UvulOnThm+++47Q58+fVSPsvLycvNrjB071tC7d2/Dtm3bDD/99JM6fueddxpc0fTp0w0hISGGTZs2GdLS0sxLaWmp+ZyHHnrIkJSUZNi4caNh586dhsGDB6vFpKqqytCtWzfD6NGjDXv37jWsXbvWEBUVZZg3b57BHe/Z8ePHDS+88IK6V/J99uWXXxratGljGDZsmNves7lz56pe53I/9u/fr7ZlpIJ169ap4/wes/1+8fvLNrV7BPN7rHH3jN9nF2JwdFHff/+9Coy1FxmGR/6wyze4fGPL0AwtW7Y0PPjgg1ZDCYicnBwVFAMDA9WwAlOnTlWh0xXVda9kef/9983nlJWVGR5++GE1HIi/v7/hlltuUUHJ0unTpw3jxo0z+Pn5GSIjIw1z5swx6HQ6gzves7Nnz6pfruHh4QatVmto166d4YknnjAUFBS47T2bNm2a+nnTaDTq52/kyJHm0Cj4PWb7/eL316UFR36PNe6e8fvsQh7yj71LPYmIiIjI8bGNIxERERHZhMGRiIiIiGzC4EhERERENmFwJCIiIiKbMDgSERERkU0YHImIiIjIJgyORERERGQTBkciIiIisgmDIxERERHZhMGRiIiIiGzC4EhEZGfffvstPDw8GlzWrVtX53OnTp2KZ555ps5jU6ZMwYQJE6z2rVixAr6+vvjb3/7WJF8LEbk2b3tfABGRuxs2bBjS0tLM2926dcPDDz+sFpOoqKgLnqfX6/HNN99g1apVNr3Pe++9h0ceeQRLlixRgZOIqLEYHImI7MzPz08tIiUlBTk5ORg6dChiY2MbfN6WLVvg4+OD/v37X/Q9Fi5ciOeeew7Lly/HLbfccsWunYjcC4MjEZED2bNnj1r36dPnoud+9dVXuPHGG1VVdkOeeuopvP3226p0cuTIkVfsWonI/TA4EhE5kN27dyMxMREREREXPffLL7/Ea6+91uA5a9asUedt2LAB11577RW8UiJyR+wcQ0TkYMHRltLGI0eOIDU19aIliD169ECrVq1UNXVxcfEVvFIickcMjkREThgcpZr6uuuuUz2kG5KQkIBNmzaptpNjx45FUVHRFbxaInI3DI5ERA4iOzsb586dsyk4SvXzzTffbNPrtmzZEps3b0Z6ejrDIxFdFgZHIiIHKm0UFwuOmZmZ2LlzJ2644QabX1vaTUrJozx3zJgxKCwsvOzrJSL3w+BIRORAPapjYmIQHx/f4Hlff/01BgwYgMjIyEa9fosWLVR4lJJNhkciuhQeBoPBcEnPJCIiu7jppptw9dVX48knn7T3pRCRm2GJIxGRk5HQeOedd9r7MojIDbHEkYiIiIhswhJHIiIiIrIJgyMRERER2YTBkYiIiIhswuBIRERERDZhcCQiIiIimzA4EhEREZFNGByJiIiIyCYMjkRERERkEwZHIiIiIoIt/h+rBqz2dOb5WwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "Tpt = 235; q = 0.3\n", "hptA = sa.get_yval(k='H', T=Tpt, q=q)\n", "sptA = sa.get_yval(k='S', T=Tpt, q=q)\n", "\n", "Tpt = 0.9*Tc; q = 0.95\n", "hptB = sa.get_yval(k='H', T=Tpt, q=q)\n", "sptB = sa.get_yval(k='S', T=Tpt, q=q)\n", "\n", "hptC = hptB-20000\n", "sptC = sptB\n", "\n", "def overlay_points(points, ofname, *, suptitle=None, ylabels=None):\n", "\n", " figg, axes = plt.subplots(1+len(points), 1, sharex=True)\n", "\n", " approx1dh = sa.get_approx1d(k='H', q=0)\n", " approx1ds = sa.get_approx1d(k='S', q=0)\n", " Ts = (np.geomspace(approx1dh.xmin, 0.9*approx1dh.xmax, 1000).tolist() \n", " + np.geomspace(0.9*approx1dh.xmax, approx1dh.xmax*0.999999, 100000).tolist())\n", "\n", " for ipt, (hpt, spt) in enumerate(points):\n", "\n", " axmain.plot(spt, hpt, 'o')\n", "\n", " r, Qcalc = [], []\n", " for T in Ts:\n", " qq = sa.get_vaporquality(T=T, k='S', propval=spt)\n", " qh = sa.get_vaporquality(T=T, k='H', propval=hpt)\n", " r.append(sa.get_yval(T=T, q=qq, k='H')-hpt)\n", " Qcalc.append(qq)\n", "\n", " solns = (\n", " sa.solve_for_T(propval=spt, k='S', q=True, bits=64, max_iter=100, boundsftol=1e-13)\n", " + sa.solve_for_T(propval=spt, k='S', q=False, bits=64, max_iter=100, boundsftol=1e-13)\n", " )\n", " if len(solns) == 3:\n", " bands = [(approx1dh.xmin, solns[0][0]),(solns[1][0], solns[2][0])]\n", " elif len(solns) == 2:\n", " bands = [(solns[0][0], solns[1][0])]\n", " elif len(solns) == 1:\n", " bands = [(approx1dh.xmin, solns[0][0])]\n", " else:\n", " raise ValueError(len(solns))\n", "\n", " if ipt == 0:\n", " ax1 = axes[0]\n", " ax1.plot(Ts, np.array(Qcalc))\n", " ax1.set_ylim(-0.5,1.5)\n", " ax1.set(ylabel=r'$q(s)$')\n", " ax1.axhspan(1,1.5, color='red', zorder=-1)\n", " ax1.axhspan(-0.5, 0, color='red', zorder=-1)\n", " for band in bands:\n", " ax1.axvspan(*band, color='lightgrey')\n", " ax1.text(np.mean(band), -0.25, '[interval]',ha='center', va='center')\n", "\n", " for band in bands:\n", " for T in band:\n", " qq = sa.get_vaporquality(T=T, k='S', propval=spt)\n", " qh = sa.get_vaporquality(T=T, k='H', propval=hpt)\n", " rr = sa.get_yval(T=T, q=qq, k='H')-hpt\n", " axes[ipt+1].plot(T, rr, 'ko')\n", "\n", " axx = axes[ipt+1]\n", " axx.plot(Ts, r)\n", " axx.axhline(0, dashes=[2, 2])\n", " axx.set_ylabel('$r$' + (f' {ylabels[ipt]}' if ylabels else ''))\n", " if ipt == len(points)-1:\n", " axx.set_xlabel('$T$ / K')\n", " if suptitle:\n", " figg.suptitle(suptitle)\n", " figg.tight_layout(pad=0.2)\n", " # figg.savefig(ofname)\n", "\n", "figmain, axmain = plt.subplots(1)\n", "plot_base(axmain)\n", "points = [(hptA, sptA), (hptB, sptB), (hptC, sptC)]\n", "overlay_points(points[0:1], ofname='liquid_side.pdf', suptitle = 'point A', ylabels=['A'])\n", "overlay_points(points[1::], ofname='vapor_side.pdf', suptitle = 'point B&C', ylabels=['B','C'])\n", "print('label (h,s coordinates)')\n", "for point, label in zip(points, ['A','B','C']):\n", " print(label, list(reversed(point)))\n", " axmain.text(*reversed(point), label, ha='left', va='bottom')\n", "# figmain.savefig(f'{FLD}_HS_main.pdf')" ] }, { "cell_type": "markdown", "id": "be2c6478-27de-4874-a07e-0ee3becb4cc8", "metadata": {}, "source": [ "We have three points: A, B, and C.\n", "\n", "Point A is on the liquid side. When searching for values of entropy yielding $q=0$ or $q=1$ (breakpoints in the possible solution interval), only one solution is found. According to the intermediate value theorem, we know that the interval from $T_{\\rm min}$ to the saturated liquid entropy contains one solution because the value of the residual function changes sign in this interval. Thus a bounded solver based on this solution interval can be practically guaranteed to converge. The superancillary routines are used to evaluate the residual function.\n", "\n", "Point B and C are on on the vapor side at the same value of entropy. Along the given value of entropy, there are three values of saturated vapor entropy corresponding to the given value of entropy. Thus there are two possible search intervals. In each search interval, if the value of the residual function has the same sign on both edges, the solution can be guaranteed to not exist and the state point must be single-phase. Such is the case for point C. There are two candidate intervals, and in each interval the sign of the residual function is either both positive or both negative at the edges of the intervals. For point B, in one interval the residual function changes sign, and thus, a solution can be found using a bounded solver.\n", "\n", "The TOMS748 algorithm is used within teqpflsh to do all bounded rootfinding of 1D residual functions." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.8" } }, "nbformat": 4, "nbformat_minor": 5 }